
NAS: N-step computation of All Solutions to the footstep planning
problem

Jiayi Wang1∗, Saeid Samadi1∗, Hefan Wang1∗, Pierre Fernbach2, Olivier Stasse3,4, Sethu Vijayakumar1

and Steve Tonneau1†

Abstract— How many ways are there to climb a staircase
in a given number of steps? Infinitely many, if we focus
on the continuous aspect of the problem. A finite, possibly
large number if we consider the discrete aspect, i.e. on which
surface which effectors are going to step and in what order.
We introduce NAS, an algorithm that considers both aspects
simultaneously and computes all the possible solutions to such
a contact planning problem, under standard assumptions. To
our knowledge NAS is the first algorithm to produce a globally
optimal policy, efficiently queried in real time for planning the
next footsteps of a humanoid robot.

Our empirical results (in simulation and on the Talos
platform) demonstrate that, despite the theoretical exponential
complexity, optimisations reduce the practical complexity of
NAS to a manageable bilinear form, maintaining completeness
guarantees and enabling efficient GPU parallelisation. NAS is
demonstrated in a variety of scenarios for the Talos robot, both
in simulation and on the hardware platform. Future work will
focus on further reducing computation times and extending the
algorithm’s applicability beyond gaited locomotion. Our video
is available at https://youtu.be/I5yFe0ez0sI

I. INTRODUCTION

In legged robotics, contact planning involves determining
where an effector, such as a foot, should make contact with
the environment to move. This process typically calculates
a sequence of contacts to solve a particular locomotion
problem instance, aiming for a single optimal solution. If
this solution becomes unfeasible due to changes in the scene
or drifts in state estimation during execution, a new plan
must be computed. This paper aims at avoiding this costly
re-computation by calculating all possible solutions for a
given instance, specifically addressing bipedal locomotion.

Contact planning is crucial for any framework designed
to generate legged motions, whether the goal is gaited

∗Joint first authors. †email: stonneau@ed.ac.uk
1University of Edinburgh, School of Informatics, UK
2TOWARD S.A.S., Toulouse, France
3LAAS-CNRS, Université de Toulouse, Toulouse, 31400, France
4Artificial and Natural Intelligence Toulouse Institute, Toulouse, France
This work was supported by a Tata Consulting Services grant,
Dynamograde (ANR-21-LCV3-0002), ROBO-TEX 2.0
(ROBOTEX ANR-10-EQPX-44-01 and TIRREX-ANR-21-ESRE-0015),
the JST Moonshot R&D Grant No. JPMJMS2031,
ANITI (ANR-19-P3IA-0004) and The Alan Turing Institute.

locomotion (like footstep planning) or more complex loco-
manipulation, which involves using all end-effectors in an
arbitrary order. The challenge lies in handling non-linear
geometric constraints (such as joint limits and collisions)
and dynamic constraints, making it a high-dimensional, non-
linear combinatorial problem. While efficient heuristics exist
for addressing simplified cases such as locomotion on flat
ground [1], the problem becomes more complicated when:

• possible contact surfaces are not continuously connected
(e.g., the steps of a staircase or stepping stones);

• Several steps need to be planned ahead to avoid dead-
ends, causing an exponential increase in combinations.

Sampling-based approaches have been proposed to tackle
the problem [2], as well as other graph-search techniques
such as A∗ or Mixed-Integer Programming [3], [4]. However,
it is often required to re-plan contact plans online (at a 10Hz
frequency [5], [6], [7]) to account for execution and state
estimation errors, especially in dynamic environments. The
worst-case exponential complexity of these approaches then
requires to significantly reduce the planning horizon n, that
is the number of future steps that can be planned in advance.
This is problematic in environments containing dead-ends as
a short planning horizon does not allow to escape them.

Deep Reinforcement Learning (DRL) has shown promise
in overcoming the need for simplifying assumptions, allow-
ing robots to traverse challenging terrains robustly. However,
so far DRL methods do not consider a long planning horizon.
Preliminary research suggests that this horizon could be
learned if combined with optimal control, but the generali-
sation is not trivial as these methods are supervised [8], [9].

We propose to explicitly characterise all feasible solutions
for a contact planning problem instance, up to a number n
of steps. This is achieved by observing that, under common
assumptions, the set of feasible contact positions reachable
in at-most n steps can be computed recursively through the
computation of Minkowski sums and polytope intersections
similarly to the idea of backward reachability analysis in con-
trol theory [10], [11]. This effectively results in an optimal
policy for computing minimum-step contact sequences given
any state of the robot. NAS can also be implemented as a

https://youtu.be/I5yFe0ez0sI

A∗ for single-query planning, but we argue that outside of
the theoretical interest, computing a globally optimal policy
enables robust online replanning for disturbance adaption.

Our main contribution is NAS (N-step computation of
All Solutions), an algorithm to compute the entire feasible
space for a contact planning problem, resulting in a real-time
optimal policy for footstep planning.

Although the theoretical complexity of the algorithm is
exponential, we empirically show that it behaves as O(m∗n),
with m the number of candidate contact surfaces and n the
number of steps planned, thanks to the introduction of a
node merging procedure that preserves the completeness of
our approach. We also demonstrate the real-time capabilities
of the framework to recompute a globally optimal plan.

In the context of this paper, our results are restricted to
gaited locomotion and require to discretise the yaw orien-
tation. Yet the method is not theoretically limited to these
use cases. We aim at extending the approach as well as
optimising the computation time of the algorithm since it
is immediately compatible with GPU parallelisation.

II. STATE OF THE ART

The contact planning problem is a special instance of
the motion planning problem, where the objective is to find
a collision-free path connecting two configurations of the
robot [12]. Planning motions for a legged robot additionally
involves planning the discrete change of contacts required to
actuate the motion [13]. This problem is high-dimensional
and subject to discrete combinatorics that make it hard to
solve. The central question is to model the contact interac-
tions in a way that reduces the combinatorics.

A. Combinatorics models for gaited locomotion
Focusing on bipedal gaited locomotion, Chestnutt et al.

explicitly deal with the combinatorics by reducing the com-
plexity of the problem through the discretisation of the action
space [3], a path further explored recently [14]. They pre-
determine a set of actions that the robot could perform for
a fixed position of each end-effector (expressed as target
positions for the other end-effector) and use the A∗ algorithm
to plan an optimal path to the goal within this action space.

Deits et al. replaced the discrete action space with a conti-
nuous one, using the classic notion of reachable workspace to
linearly constrain the end-effector positions relatively to each
other, though the orientation of the robot remains discretised
[4]. A∗ is not immediately applicable with a continuous
action space, so Mixed-Integer Programming (MIP) is used
to compute a globally optimal solution. MIP has been
extended to quadrupeds [15], [5] and recently the quasi-
static constraint on the locomotion [16], [6] was overcome.
To reduce the computational burden of MIP, we proposed a
relaxation of the combinatorics using L1-norm minimisation
[17], [18], which does not guarantee the convergence to a
solution. Other relaxations have since been proposed [19].

Our approach leverages both A∗ and MIP formulations.
We use a dynamic programming approach as in A∗, but it is
compatible with a continuous action space. Furthermore, we
compute the entire feasible space and not a single solution.

B. Combinatorics models for multi-contact locomotion

Several contributions have also tackled the more general
multi-contact problem, where no assumptions are made on
the gait followed by the robot and all end-effectors (such as
hands) are possibly involved in the contact creations. They
are also graph-search methods and have been demonstrated
in challenging scenarios, including climbing, chair egress, or
tunnel crawling [20], [21], [22]. As for the gaited locomotion
case, the reachable workspace has been used in this context
to reduce the dimensionality of the problem and its combi-
natorics [2], [23]. Kumagai et al. [24] built on this and the
notion of contact sustainability [25], [26] to propose an A∗

algorithm that efficiently tackles the multi-contact planning
problem which we consider to be the state of the art. While
we also use dynamic programming, our objective is the com-
putation of all solutions through recursive computation of all
reachable states, as similarly done in backward reachability
analysis [10], [11]. For robotics, reachability analysis has
been used for motion planning under uncertainty [27], [28],
[29], while we focus on the contact planning problem.

C. Towards combinatorics-free contact locomotion?

A variety of approaches have proposed to work around
the discrete aspect of combinatorics and relax the contact
planning problem into a continuous trajectory optimisation
one [30], [31], [32], [33]. The potential advantage is clear,
as the combinatorics is responsible for the exponential
complexity of the problem. While these approaches do not
guarantee the convergence to feasible solutions, recent work
in manipulation suggests that smoothing allows the discovery
of solutions to complex scenarios [34], [35], [36].

Deep Reinforcement Learning (DRL) techniques are at-
tractive as they learn a policy efficiently queried online,
and have successfully demonstrated their ability to tackle
multi-contact locomotion without explicitly modelling the
contact decisions [37], [38]. Yet the recent inclusion of
model-based optimisation within the training framework has
empirically demonstrated the interest in using optimal control
with a dynamics model (including contacts) in terms of
generalisation and robustness [39]. A better characterisation
of the feasible space for the locomotion problem could
alleviate this computational burden and enable the learning
of a longer horizon as suggested by [9].

III. DEFINITIONS, NOTATIONS AND PROBLEM STATEMENT

A. Problem statement

In the present work, we focus on planning contact se-
quences for gaited bipedal locomotion tasks. A simple use

Fig. 1: A 2-step plan for the left foot to reach the red target.

case for our problem is illustrated in Fig. 1. The figure
demonstrates one feasible contact plan that brings the robot
from its starting configuration to a goal position, expressed
as a terminal constraint on the position of the left foot. Our
goal is to capture the infinitely many contact plans that solve
this problem. We assume that the right and left foot alternate
in creating contacts towards the goal. For now, we assume
that the orientation of the feet around the axis z is fixed
for the duration of the planning. The orientation can change
along the x and y axes to fit to the contact surfaces.

To simplify the formulation, our equations assume that the
left foot always acts as the end-effector reaching the target
to complete the task. This assumption is solely for clarity in
understanding the algorithm and does not limit our approach.

Given a target goal set G, the environment, the kinematic
constraints of the robot, and a maximum number of steps n,
our objective is to compute the set of all possible contact
sequences that bring the robot to G in at most n steps.

Fig. 2: Two-step feasibility computation. 1. Red: The goal
for this contact planning problem is to find a feasible contact
sequence such that the left foot reaches the red position pl,
thus we define G = {pl}. Green: The environment S is the
union of 2 convex polygons. 2. All positions of the right
foot such that pl can be reached by the left foot in one
step are bounded by the blue polytope GR. It is obtained by
translating the antecedent polytope lAr by pl. 3. One-step
feasible set for the right foot GF . 4. Reachability polytope
rAl for the position of the right foot indicated by the arrow.
5.rAl translated by each extreme point of GF . 6. & 7.
Minkowski sum of rAl and GF . 8. & 9. Two-step feasible
set for the right foot, composed of 2 convex polygons.

B. Surfaces, reachable areas, and kinematic constraints

We use convex polytopes to describe the environment and
the reachable workspace of the end-effectors of the robot.
The set of feasible solutions to a contact planning problem
is described as a union of polytopes. They are either 3D
polyhedra (Fig. 2.2) or 2D polygons in a 3D space (Fig. 2.3).
A polytope P is defined as the convex hull of its vertices:

P := {p ∈ R3|∃λ ∈ R+d, ∥λ∥1 = 1 ∧ p = Pλ} . (1)

where P ∈ R3×d is a matrix obtained by concatenating
the d extreme vertices of P and λ is a unit weighting vector
of the extreme points. In the following, we implicitly define
the matrix L for any polytope L that we define.

The environment is represented as a union of m disjoint
convex contact surfaces S =

⋃m
j=1 Sj (Fig. 2.1 - green).

The kinematic constraints of the robot are linearised as
commonly done in graph-based approaches. We define rKl

as the polytope describing the set of reachable positions for
the left foot assuming the right foot is located at the origin.
We similarly define lKr for the right foot.

The antecedent constraints also need to be defined because
our algorithm works backward. We define the lAr (Fig. 2.3
- blue) as the set of right foot positions from which a left
foot position can be placed at the origin of the world. rAl

is similarly defined for the left positions such that a right
foot position at the origin is reachable (Fig. 2.4 - red). rAl

and lAr are obtained by applying a central symmetry to the
vertices of rKl and lKr.

The goal G is the polytope defining the task for a robot.
The plan is successful when either end-effector reaches G. G
is a subset of a contact surface Sj , and can be a degenerated
polytope (i.e. a single point, as in Fig. 2.1 - red).

IV. OVERVIEW

We propose to compute the set of feasible contact se-
quences to G using a dynamic programming algorithm.
Starting from n = 0, we recursively compute all feasible
states from which we can reach G in n steps, until a
termination condition is met, either if the current state of
the robot is reached or a user-defined n is reached.

By definition, the feasible set F0 for n = 0 (i.e. the target
is reached without making any steps) is G (Fig. 2.1). We
then compute the reachable set R1 of all positions that can
bring the end-effector to G in one step, for n = 1 (Fig. 2.2).

Most of the positions in R1 are not contact positions, so to
compute the feasible set F1 we intersect R1 with S, giving
F1 =

⋃m
j=1 F

j
1 , with F j

1 = R1 ∩ Si (Fig. 2.3).
Each non-empty F j

1 describes a 2D polygon such that for
any position of the right foot on the polygon, there exists a
one-step sequence that results in the left foot inside G. Each
F j

1 corresponds to a node added as child to F0 in a tree T .
We can then proceed similarly to compute the feasibility

set F j
2 associated with each F j

1 (Fig. 2.4-9), and recursively
compute the feasibility sets until we reach Fn.

From any node of T , the contact sequence to G is obtained
by recursively selecting the parent node until G is reached.

At runtime, to compute a contact sequence from a given
state of the robot, we use a k-d tree to efficiently search for
the node corresponding to the state of the robot.

V. 1-STEP FEASIBILITY

Similarly to other Dynamic Programming algorithms, we
reason from the goal G. The antecedent states form the set
of all positions of an end-effector from which G can be
reached in exactly one step. We rely on Fig. 2. to illustrate the
procedure. It describes the computation of the 2-step feasible
set for the problem in Fig. 1 and contains all the possible
cases that can occur when computing the antecedent states.

A. Reachability from a given position (Fig. 2.1-2)

For a given position pe of an end-effector e on flat ground,
the set of positions of the other effector e such that pe is
reachable in one step is by definition eAe translated by pe:

peR := {pe ∈ R3|∃λ ∈ R+d,

||λ|| = 1 ∧ pe =
e Aeλ+ pe =pe Rλ} .

In the general case, if Q is the rotation matrix of minimum
distance (in the log sense) that aligns the robot’s root frame
z axis with the contact surface normal, we write:

peR := {pe ∈ R3|∃λ ∈ R+d,

||λ|| = 1 ∧ pe = QeAeλ+ pe =pe Rλ} .

B. Reachability from a set of positions (Fig. 2.4-7)

More interestingly, we can compute the antecedent set
of a convex polytope Re of positions of e that share the
same contact normal. This set ReR is all the positions for e
allowing to create a contact with e inside Re in one step. It
is thus the union of all antecedents at every point of Re:

ReR := {QeAeλ+Reλ1, ||λ|| = ||λ1|| = 1} . (2)

With λ and λ1 positive vectors of appropriate dimensions.
Eq(2) denotes the Minkowski sum of the two convex sets Re

and eAe (the latter being rotated by Q). Therefore, ReR is
convex since the Minkowski sum preserves convexity.

C. Computing the 1-step feasible set (Fig. 2.7-9)
ReF is the subset of ReR that results in contact locations.

ReF is obtained by intersecting ReR with the contact
surfaces of the environment and, whenever a collision is
detected, computing the resulting intersected surfaces. ReF
is thus composed of the union of all resulting surfaces:

ReF =
⋃m

j=1
ReF j , with ReF j =Re R∩ Si.

If the set of positions given as input is a convex polytope
(as is the case when we start from G), all resulting surfaces
are convex polygons, since the intersection of 2 convex
polytopes is a convex polytope. This means that at any point
of the expansion, the feasible set is always a union of
convex polytopes (possibly degenerated into a point).

VI. THE NAS ALGORITHM

To compute the N-Step feasible space, that is the set of
all possible positions from which the robot can reach G in
at most n steps, we recursively compute the feasible set for
all the steps from 1 to n in order to populate a tree T .

A. Tree description and initialisation

Each node of T contains information about the end-
effector currently in contact, the surface in contact, as well
as the subset of the surface covered by this node. It also
contains a link to its parent in the T as shown in struct 1.

struct 1 NODE

effectorId : ENUM
parent : NODE* // parent node
surfaceId : INT
extremePoints : POINT LIST //polygon description

T is implemented as an array of Node lists. Nodes are
indexed by their depth in the tree, which is the number of
steps required to reach the target from the node.

B. The NAS algorithm

Algorithm 2 NAS

function N STEPS FEASIBILITY(T , n)
if n == 0 then return T // (Fig. 2.1)
for each leaf node node in T do

feasibleNodes← FEASIBLE NODES(node)
ADD LEAVES(T , node, feasibleNodes)

return N STEPS FEASIBILITY(T , n− 1)

function FEASIBLE NODES(node)
effId← OTHER(node.effectorId)
nodeLists← []
R ← REACH POLYTOPE(node) // (Fig. 2.2)
for each surface s in S do

feasible s← INTERSECT(R, s) // (Fig. 2.3,8)
if NOT EMPTY(feasible s) then

child← NODE(effId, node, s.Id, feasible s)

nodeLists.add(child)

return nodeLists

NAS consists in initialising T with a single node
G before calling N STEPS FEASIBILITY (Algorithm 2).
N STEPS FEASIBILITY is a recursive function that com-
putes the expansion of T for 1 step before calling itself. Each
call computes the 1-step feasible set associated with each leaf
node (method FEASIBLE NODES), creates children nodes,
and adds them to the leaf node (method ADD LEAVES).

FEASIBLE NODES first computes which end-effector is
selected for the expansion (method OTHER). The method
REACH POLYTOPE computes the volume R from which
the node can be reached as per eq.(2). R is then intersected
with each potential contact surface from S (method INTER-
SECT). Each non-empty intersection results in a new node.

C. Discrete handling of the rotation
NAS can be extended to handle a rotation of the foot

around the z axis, if we discretise the possible orienta-
tions [4]. The updated function FEASIBLE NODES is given
by Algorithm 3. ROTATE rotates R around the z axis.
Additionally, the current rotation angle of the feet needs to be
added to the node structure to know the end-effector orien-
tation at the current state. This algorithm is presented here
for completeness, but our experiments focus on Algorithm 2.

Algorithm 3 FEASIBLE NODES with yaw orientation

function FEASIBLE NODES(node)
effId← OTHER(node.effectorId)
nodeLists← []
R ← REACH POLYTOPE(node)
for each discrete angle value θ do
Rθ ← ROTATE(R, θ)
for each surface s in S do

feasible s← INTERSECT(Rθ, s)
if NOT EMPTY(feasible s) then

γ ← node.angle+ θ
child← NODE(effId, node, s.Id, feasible s, γ)

nodeLists.add(child)

return nodeLists

D. Properties of T
1) n-step completeness: For a given robot state, defined as

the position pe of the active end-effector on a contact surface,
if there exists a contact sequence leading to the target in n
steps, there is necessarily a node in T that contains pe

1.
Otherwise, there is no valid up-to-n-steps contact sequence.

2) Minimum step optimality: For a given pe, there can
be more than one matching node. The nodes with the lowest
depth all denote a sequence with a minimum number of steps.

E. Optimisation of the algorithm
1) Optimising the tree generation: Unsurprisingly, NAS

has a theoretical exponential complexity in O(bn), with
b ≤ m the branching factor (or average number of successors
per node). This is aligned with the worst case A∗ and
mixed-integer complexities. However, this complexity can be
reduced through the use of what we call node merging.

The expansion of several leaf nodes at step j can lead
to new leaf nodes at step j + 1 covering exactly the same
surface. This can happen when all points reachable on a given
surface have been covered by the expansion. It is possible
to reduce the number of branches by merging such nodes
into a single one with several parents, without changing the
completeness nor the optimally properties of T : for bidepal
locomotion the position of the parent end-effector has no
influence on the expansion of the node, and since we keep
track of all parents no path is lost. This optimisation can also
be applied if more than 2 end-effectors are involved but it
requires considering all end-effectors when merging.

1We abusively refer to a node containing a point or a state to indicate
that the polygon associated with the node contains the point of interest.

2) Optimising the tree exploitation using a kd-tree: The
algorithms used for contact planning will require identifying
which node(s) of T “contain(s)” a given point pe, i.e. nodes
such that pe is included in their associated polygon. Finding
such a node involves iterating through all the nodes sorted
by their depth in T until encountering one that contains
pe (it will be an optimal one). This process has a linear
complexity. To improve efficiency, we store the nodes in a
separate k-d tree [40] for each end-effector. This allows for
an average search complexity of log(h), with h the total
number of nodes. The construction complexity of the k-
d tree, in O(h log(h), is dominated by the complexity of
constructing T . Additionally, the k-d tree can efficiently
return all the nodes containing pe.

F. Applications for NAS

Most of the following use cases rely on the search of
a specific node in T . The resulting complexities indicated
assume that the search is implemented using the k-d tree for
a complexity in O(log(h)), with h the number of nodes in
T , as detailed in Section (VI-E).

1) T as an optimal policy for contact planning: For a
given state of the robot pe, we can find any node that
contains pe (and the associated effectorId), then go up
the parent node chain to compute a contact sequence to the
target. Assuming the depth of the node is k ≤ n, this results
in a feasible contact plan F = [Fk−1,e, · · · ,F1,e,F0,e ⊂ G],
where Fi,e is the feasible convex polygon given by the node
at depth i in the selected sequence. This process has an
average complexity of O(n+ log(h)).

To find a contact sequence with a minimal number of
steps, we can select the first node at the lowest depth which
contains pe. Alternatively, if pe is known at expansion time,
the algorithm terminating condition can be modified to stop
the expansion whenever a node containing pe is generated
(or until a maximum iteration is reached, meaning that the
problem has no solution). This node will always result in a
path that involves the minimum number of steps to the target.

2) Computing exact footstep locations: T is a policy
for selecting contact surfaces, but does not directly tell us
where exactly on the surface the stepping should occur. By
construction of the graph, any point included by a node
is optimal regarding the minimum number of steps. This
allows us to apply any selection technique for a valid contact
position, as long as we choose a point reachable from the
previous location of the robot. The closest reachable point
from the Chebyshev center of the node can be selected
for robustness for instance. If a given objective has to
be minimised for the footstep plan, a linearly constrained
optimisation problem can be solved. The user is free to
consider as many steps as needed in the optimisation horizon
nhor: no matter nhor, the positions selected will always be
feasible and lead to a minimal number of steps. From a
current position p0 within a node at depth k > 0, an example
of convex program is:

find X = [p1, · · · ,pnhor
] ∈ R3×nhor

min l(X)

s.t. ∀i, 1 ≤ i ≤ nhor :

pi ∈ pi−1R∩ Fk−i,0

(3)

With l a convex objective, 1 ≤ nhor ≤ k and piR the
reachable workspace from the contact pi.

3) Online replanning using T : At any point during the
motion of the robot, the contact plan can be efficiently
updated if the situation invalidates it. Whenever the robot
makes a new step, we can check whether the contact location
pi belongs to the planned Fi−1,e. If not (e.g. due to a
perturbation of the hardware) we can immediately query T
again and obtain an updated path from pi.

The formulation also allows to dynamically mark areas of
the scene as impassible. To remove a contact surface from the
feasible set, we mark all the nodes concerned by the surface
as invalid. Upon re-planning, from the current state of the
robot, we can iterate through the nodes found until we find
a sequence that does not go through any invalid nodes. The
average complexity for the search is lower than the search
for the nodes containing the current position (O(log(h))),
plus at most v times the exploration of paths each of length
of at most n, giving O(n∗v+log(h)), where v is the number
of nodes that contain the current robot state.

4) Optimal trajectory optimisation: NAS can also be
formulated as a single-query A∗ algorithm with continuous
nodes instead of discrete points, with an expansion that
is not exhaustive but rather guided by a heuristic, for a
likely better average complexity. The main advantage over
a standard formulation is that the formulation is continuous
and reduces the branching factor. We leave the comparison
of both approaches for future work as the focus of this paper
is on the characterisation of all solutions.

G. Implementation details

We implement the Minkowski sum of a polygon S and a
polyhedron P as the convex hull of the polytopes obtained
by translating P by each vertex of S. The complexity of
this operation is O(k log(k)) where k = kS ∗ kP and kS
and kP are the total number of vertices in S and P . This
operation remains efficient as kS typically remains below 10.
We compute the convex hulls using the SciPy [41]. Our code
is implemented in Python, including collision detection and
the k-d tree, with efficiency not being the primary concern.

To avoid computing plans that result in the foot partially
out of a contact surface, we automatically scale down the
surfaces given as input to NAS. This parametrisation is
optional if the case is handled by the controller as in [42].

VII. EXPERIMENTS

We report quantitative information about the generation
and run time of NAS that empirically demonstrate the vali-
dity of the approach on the Talos robot [43]. The experiments
were run on an desktop computer equipped with an Intel
i9 9900K CPU (3.6GHz) and 64GB RAM. The motions

were synthesised using the PAL robotics controller. They are
validated on the real robot or on the Gazebo simulator [44],
synchronised in real-time with Unity 3D for rendering [45].

We designed 5 different scenes, 4 of which are shown in
the teaser figure, with a number of surfaces varying from
4 to 43. One scene includes non-flat surfaces. Our video
(https://youtu.be/I5yFe0ez0sI) demonstrates ex-
amples of minimum step motions computed with NAS,
including an example of dynamic re-planning.

A. Tree generation analysis

The theoretical complexity of the graph generation is
O(bn), b ≤ m. This is confirmed by Fig. 3, which presents
the number of nodes in T when no optimisation is used
in one representative use case. However, node merging
optimisation results in a bilinear complexity O(m ∗ n) in
all scenarios, as evidenced by Fig. 4. Even in unrealistic
scenarios (such as planning 100 steps over a scene with more
than 40 surfaces), the graph generation time remains below
5 minutes. This proves empirically the viability of NAS.

Fig. 3: Exponential growth of nodes without node merging.

B. Tree exploitation

For lack of space, we report briefly on the exploitation
of the tree. The k-d tree query time is conditioned by the
number of nodes, which in all the scenarios demonstrated
remains below 10,000. In this context, the query time is
below 24 ms in our scenarios and at worst 89 ms (for the
scene with 43 surfaces), within our 10Hz requirement.

To compute the footstep sequences we solve eq(3) with the
complete horizon (although we have established that this is
not a requirement) and l = 02. In all instances, the cumulated
time to query the k-d tree and solve the QP remains below
100 ms. Here the resolution time only depends on n as the
combinatorics is fixed: for instance, the 43 surfaces scene is
solved in 6 ms (n = 23), while the re-planning scene is the
longest to solve with 79 ms (and n = 61).

2Hence we only solve a feasibility problem.

https://youtu.be/I5yFe0ez0sI

Fig. 4: In all instances, node merging allows the number of
nodes and generation time for T to grow as O(m ∗ n).

VIII. DISCUSSION

Our experiments show that NAS is applicable to typical
planning problems for biped robots. The main benefit of the
formulation is that it comes with strong guarantees, within
the assumptions that are made when defining the problem.

1) Handling multiple goals: As a dynamic programming
approach NAS needs to be computed from the goal for the
feasibility to be guaranteed. Expanding T from the starting
position would allow to tackle multiple goals, but online-
replanning would not be possible past the first step.

2) Computing n: The number of steps n can be initially
automatically computed, as we stop the expansion as soon as
the current robot position is covered by T . However, if re-
planning involves that the new optimal motion requires more
than n steps, a new expansion phase needs to be recomputed
online until the new value of n (again, optimal) is found.

3) Handling continuous yaw orientation: Our approach
(and the state of the art) currently only allows handling the
yaw orientation of the end-effectors in a discretised manner.

We are working on a continuous formulation that involves
extending the reachability formulation to four dimensions.

4) Scaling the approach to non-gaited loco-manipulation:
NAS can be directly extended to any legged robots. However,
the size of T will grow significantly as the result of introdu-
cing additional discrete choice, in particular if locomotion is
not gaited, although node merging remains possible. Future
work will establish under what conditions this extension is
viable, specifically if the computation of T can be optimised.

5) Parallelisation: As a breadth-first algorithm, NAS is
parallelisable, which could significantly improve the com-
putation times. Furthermore, the operations involved in the
expansion are all compatible with a GPU implementation,
which could further improve this efficiency.

6) Interest for machine learning: We argue that the cha-
racterisation of the complete feasible space, even under sim-
plifying assumptions, presents two advantages for learning:

• The tailoring of the search space to the close neighbor-
hood of the feasible set, to improve sample efficiency;

• The complete combinatorics can be explored and rele-
vant information regarding optimality and whole-body
feasibility can be fed back to the training network.

IX. CONCLUSION

In this work, we present NAS, a dynamic programming
algorithm for computing the feasible space of a contact
planning problem. NAS computes a globally optimal policy
for a given problem, which allows for real-time planning
(and re-planning) of a feasible contact plan. Thanks to the
node merging procedure we introduce, the computation of
the feasible space is performed with a bilinear complexity.

The reachability-based formulation of NAS also enables
the implementation of a novel, continuous A∗ algorithm to
solve the problem once, with optimality guarantees equiva-
lent to recent Mixed-Integer formulations.

NAS is parallelisable and could be considered for impro-
ving the efficiency of machine learning algorithms thanks to
the tight characterisation of the search-space for the problem.

X. ACKNOWLEDGEMENTS

The authors would like to thank Rajesh Subburaman for
his help on hardware experiments.

REFERENCES

[1] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi,
and H. Hirukawa, “Biped walking pattern generation by using preview
control of zero-moment point,” in IEEE Int. Conf. Rob. Autom. (ICRA),
vol. 2, 2003, pp. 1620–1626 vol.2.

[2] S. Tonneau, A. Del Prete, J. Pettré, C. Park, D. Manocha, and
N. Mansard, “An efficient acyclic contact planner for multiped robots,”
IEEE Transactions on Robotics, vol. 34, no. 3, pp. 586–601, 2018.

[3] J. Chestnutt, M. Lau, G. Cheung, J. Kuffner, J. Hodgins, and
T. Kanade, “Footstep planning for the honda asimo humanoid,” in
IEEE Int. Conf. Rob. Autom. (ICRA), 2005, pp. 629–634.

[4] R. Deits and R. Tedrake, “Footstep planning on uneven terrain with
mixed-integer convex optimization,” in 2014 IEEE-RAS international
conference on humanoid robots. IEEE, 2014, pp. 279–286.

[5] F. Risbourg, T. Corbères, P.-A. Léziart, T. Flayols, N. Mansard, and
S. Tonneau, “Real-time footstep planning and control of the solo
quadruped robot in 3d environments,” in IEEE/RSJ Int. Conf. Intell.
Rob. Sys. (IROS), 2022, pp. 12 950–12 956.

[6] T. Corbères, C. Mastalli, W. Merkt, I. Havoutis, M. Fallon,
N. Mansard, T. Flayols, S. Vijayakumar, and S. Tonneau, “Perceptive
locomotion through whole-body mpc and optimal region selection,”
2024.

[7] F. Jenelten, R. Grandia, F. Farshidian, and M. Hutter, “TAMOLS:
Terrain-aware motion optimization for legged systems,” IEEE Trans.
Robot. (T-RO), vol. 38, 2022.

[8] J. Wang, S. Kim, T. S. Lembono, W. Du, J. Shim, S. Samadi,
K. Wang, V. Ivan, S. Calinon, S. Vijayakumar, and S. Tonneau,
“Online multicontact receding horizon planning via value function
approximation,” IEEE Trans. Robot. (T-RO), vol. 40, pp. 2791–2810,
2024.

[9] A. K. C. Ravi, V. Dhédin, A. Jordana, H. Zhu, A. Meduri, L. Righetti,
B. Schölkopf, and M. Khadiv, “Efficient search and learning for
agile locomotion on stepping stones,” 2024. [Online]. Available:
https://arxiv.org/abs/2403.03639

[10] S. Bansal, M. Chen, S. Herbert, and C. J. Tomlin, “Hamilton-jacobi
reachability: A brief overview and recent advances,” in 2017 IEEE
56th Annual Conference on Decision and Control (CDC). IEEE,
2017, pp. 2242–2253.

[11] M. Althoff, G. Frehse, and A. Girard, “Set propagation techniques
for reachability analysis,” Annual Review of Control, Robotics, and
Autonomous Systems, vol. 4, no. 1, pp. 369–395, 2021.

[12] T. Lozano-Pérez and M. A. Wesley, “An algorithm for planning
collision-free paths among polyhedral obstacles,” Commun. ACM,
vol. 22, no. 10, p. 560–570, oct 1979. [Online]. Available:
https://doi.org/10.1145/359156.359164

[13] T. Bretl, “Motion planning of multi-limbed robots subject to equilib-
rium constraints: The free-climbing robot problem,” The International
Journal of Robotics Research, vol. 25, pp. 317 – 342, 2006.

[14] R. J. Griffin, G. Wiedebach, S. McCrory, S. Bertrand, I. Lee, and
J. Pratt, “Footstep planning for autonomous walking over rough
terrain,” in IEEE-RASInt. Conf. on Hum. Rob., 2019, pp. 9–16.

[15] B. Aceituno-Cabezas, H. Dai, J. Cappelletto, J. C. Grieco, and
G. Fernández-López, “A mixed-integer convex optimization frame-
work for robust multilegged robot locomotion planning over challeng-
ing terrain,” in 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2017, pp. 4467–4472.

[16] B. Ponton, M. Khadiv, A. Meduri, and L. Righetti, “Efficient multi-
contact pattern generation with sequential convex approximations of
the centroidal dynamics,” IEEE Trans. Robot. (T-RO), vol. 37, no. 5,
pp. 1661–1679, 2021.

[17] S. Tonneau, D. Song, P. Fernbach, N. Mansard, M. Taı̈x, and
A. Del Prete, “Sl1m: Sparse l1-norm minimization for contact planning
on uneven terrain,” in IEEE International Conference on Robotics and
Automation (ICRA), 2020.

[18] D. Song, P. Fernbach, T. Flayols, A. D. Prete, N. Mansard, S. Tonneau,
and Y. J. Kim, “Solving footstep planning as a feasibility problem
using l1-norm minimization,” IEEE Robot. Automat. Lett. (RA-L),
vol. 6, no. 3, pp. 5961–5968, 2021.

[19] T. Marcucci, M. Petersen, D. von Wrangel, and R. Tedrake, “Motion
planning around obstacles with convex optimization,” Science
Robotics, vol. 8, no. 84, p. eadf7843, 2023. [Online]. Available:
https://www.science.org/doi/abs/10.1126/scirobotics.adf7843

[20] A. Escande, A. Kheddar, S. Miossec, and S. Garsault, “Planning
support contact-points for acyclic motions and experiments on hrp-
2,” in Experimental Robotics. Springer, 2009, pp. 293–302.

[21] K. Hauser, T. Bretl, J.-C. Latombe, K. Harada, and B. Wilcox, “Motion
planning for legged robots on varied terrain,” The International Jour-
nal of Robotics Research, vol. 27, no. 11-12, pp. 1325–1349, 2008.

[22] S. Wang and K. Hauser, “Unified multi-contact fall mitigation planning
for humanoids via contact transition tree optimization,” in IEEE-
RASInt. Conf. on Hum. Rob., 2018, pp. 1–9.

[23] S. Tonneau, P. Fernbach, A. Del Prete, J. Pettré, and N. Mansard,
“2pac: Two-point attractors for center of mass trajectories in multi-
contact scenarios,” ACM Trans. on Graph. (TOG), vol. 37, no. 5, 2018.

[24] I. Kumagai, M. Morisawa, S. Hattori, M. Benallegue, and F. Kanehiro,
“Multi-contact locomotion planning for humanoid robot based on
sustainable contact graph with local contact modification,” IEEE
Robot. Automat. Lett. (RA-L), vol. 5, no. 4, pp. 6379–6387, 2020.

[25] S. Tonneau, “Motion planning and synthesis for virtual characters
in constrained environments,” Theses, INSA de Rennes, Feb. 2015.
[Online]. Available: https://theses.hal.science/tel-01144630

[26] I. Kumagai, M. Morisawa, M. Benallegue, and F. Kanehiro, “Bipedal
locomotion planning for a humanoid robot supported by arm contacts

based on geometrical feasibility,” in IEEE-RASInt. Conf. on Hum.
Rob., 2019, pp. 132–139.

[27] S. Lengagne, N. Ramdani, and P. Fraisse, “Planning and fast re-
planning safe motions for humanoid robots,” IEEE Transactions on
Robotics, vol. 27, no. 6, pp. 1095–1106, 2011.

[28] S. B. Liu, H. Roehm, C. Heinzemann, I. Lütkebohle, J. Oehlerking,
and M. Althoff, “Provably safe motion of mobile robots in human
environments,” in 2017 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS). IEEE, 2017, pp. 1351–1357.

[29] J. Borquez, S. Peng, Y. Chen, Q. Nguyen, and S. Bansal, “Hamilton-
jacobi reachability analysis for hybrid systems with controlled and
forced transitions,” in Proc. of Robotics: Science and Systems, 2023.

[30] I. Mordatch, E. Todorov, and Z. Popović, “Discovery of complex
behaviors through contact-invariant optimization,” ACM Trans.
Graph., vol. 31, no. 4, Jul. 2012. [Online]. Available: https:
//doi.org/10.1145/2185520.2185539

[31] K. Yunt and C. Glocker, “Trajectory optimization of mechanical hybrid
systems using sumt,” in 9th IEEE International Workshop on Advanced
Motion Control, 2006., 2006, pp. 665–671.

[32] M. Posa, C. Cantu, and R. Tedrake, “A direct method for trajectory
optimization of rigid bodies through contact,” The Int. J. of Rob. Res.
(IJRR), vol. 33, 2014.

[33] A. W. Winkler, C. D. Bellicoso, M. Hutter, and J. Buchli, “Gait and
trajectory optimization for legged systems through phase-based end-
effector parameterization,” IEEE Robotics and Automation Letters,
vol. 3, no. 3, pp. 1560–1567, 2018.

[34] D. Layeghi, S. Tonneau, and M. Mistry, “Optimal control via combined
inference and numerical optimization,” in IEEE Int. Conf. Rob. Autom.
(ICRA). IEEE, 2022, pp. 3429–3435.

[35] T. Pang, H. T. Suh, L. Yang, and R. Tedrake, “Global planning
for contact-rich manipulation via local smoothing of quasi-dynamic
contact models,” IEEE Trans. Robot. (T-RO), 2023.

[36] Q. Le Lidec, F. Schramm, L. Montaut, C. Schmid, I. Laptev, and
J. Carpentier, “Leveraging randomized smoothing for optimal control
of nonsmooth dynamical systems,” Nonlinear Analysis: Hybrid Sys-
tems, vol. 52, p. 101468, 2024.

[37] J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis,
V. Koltun, and M. Hutter, “Learning agile and dynamic motor skills
for legged robots,” Science Robotics, vol. 4, no. 26, p. eaau5872,
2019. [Online]. Available: https://www.science.org/doi/abs/10.1126/
scirobotics.aau5872

[38] Z. Zhuang, Z. Fu, J. Wang, C. Atkeson, S. Schwertfeger, C. Finn, and
H. Zhao, “Robot parkour learning,” in Conference on Robot Learning
(CoRL), 2023.

[39] F. Jenelten, J. He, F. Farshidian, and M. Hutter, “Dtc: Deep
tracking control,” Science Robotics, vol. 9, no. 86, p. eadh5401,
2024. [Online]. Available: https://www.science.org/doi/abs/10.1126/
scirobotics.adh5401

[40] J. L. Bentley, “Multidimensional binary search trees used for
associative searching,” Commun. ACM, vol. 18, no. 9, p. 509–517,
Sep. 1975. [Online]. Available: https://doi.org/10.1145/361002.361007

[41] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy,
D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J.
van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J.
Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng,
E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman,
I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H.
Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy 1.0 Contributors,
“SciPy 1.0: Fundamental Algorithms for Scientific Computing in
Python,” Nature Methods, vol. 17, pp. 261–272, 2020.

[42] R. J. Griffin, G. Wiedebach, S. McCrory, S. Bertrand, I. Lee, and
J. Pratt, “Footstep planning for autonomous walking over rough ter-
rain,” in 2019 IEEE-RAS 19th International Conference on Humanoid
Robots (Humanoids). IEEE, 2019, pp. 9–16.

[43] O. Stasse, T. Flayols, R. Budhiraja, K. Giraud-Esclasse, J. Carpentier,
J. Mirabel, A. Del Prete, P. Souères, N. Mansard, F. Lamiraux et al.,
“Talos: A new humanoid research platform targeted for industrial
applications,” in 2017 IEEE-RAS 17th International Conference on
Humanoid Robotics (Humanoids). IEEE, 2017, pp. 689–695.

[44] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an
open-source multi-robot simulator,” in 2004 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) (IEEE Cat.
No.04CH37566), vol. 3, 2004, pp. 2149–2154 vol.3.

[45] Unity Technologies, Unity3D Engine, https://unity.com/, 2024, version
2024.1. [Online]. Available: https://unity.com/

https://arxiv.org/abs/2403.03639
https://doi.org/10.1145/359156.359164
https://www.science.org/doi/abs/10.1126/scirobotics.adf7843
https://theses.hal.science/tel-01144630
https://doi.org/10.1145/2185520.2185539
https://doi.org/10.1145/2185520.2185539
https://www.science.org/doi/abs/10.1126/scirobotics.aau5872
https://www.science.org/doi/abs/10.1126/scirobotics.aau5872
https://www.science.org/doi/abs/10.1126/scirobotics.adh5401
https://www.science.org/doi/abs/10.1126/scirobotics.adh5401
https://doi.org/10.1145/361002.361007
https://unity.com/
https://unity.com/

	Introduction
	State of the art
	Combinatorics models for gaited locomotion
	Combinatorics models for multi-contact locomotion
	Towards combinatorics-free contact locomotion?

	definitions, notations and problem statement
	Problem statement
	Surfaces, reachable areas, and kinematic constraints

	Overview
	1-step feasibility
	Reachability from a given position (Fig. 2.1-2)
	Reachability from a set of positions (Fig. 2.4-7)
	Computing the 1-step feasible set (Fig. 2.7-9)

	The NAS algorithm
	Tree description and initialisation
	The NAS algorithm
	Discrete handling of the rotation
	Properties of T
	n-step completeness
	Minimum step optimality

	Optimisation of the algorithm
	Optimising the tree generation
	Optimising the tree exploitation using a kd-tree

	Applications for NAS
	T as an optimal policy for contact planning
	Computing exact footstep locations
	Online replanning using T
	Optimal trajectory optimisation

	Implementation details

	experiments
	Tree generation analysis
	Tree exploitation

	discussion
	Handling multiple goals
	Computing n
	Handling continuous yaw orientation
	Scaling the approach to non-gaited loco-manipulation
	Parallelisation
	Interest for machine learning

	Conclusion
	Acknowledgements
	References

