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Abstract— In Receding Horizon Planning (RHP), it is critical
that the motion being executed facilitates the completion of
the task, e.g. building momentum to overcome large obstacles.
This requires a value function to inform the desirability of
robot states. However, given the complex dynamics, value
functions are often approximated by expensive computation of
trajectories in an extended planning horizon. In this work, to
achieve online multi-contact Receding Horizon Planning (RHP),
we propose to learn an oracle that can predict local objectives
(intermediate goals) for a given task based on the current robot
state and the environment. Then, we use these local objectives to
construct local value functions to guide a short-horizon RHP. To
obtain the oracle, we take a supervised learning approach, and
we present an incremental training scheme that can improve
the prediction accuracy by adding demonstrations on how to
recover from failures. We compare our approach against the
baseline (long-horizon RHP) for planning centroidal trajectories
of humanoid walking on moderate slopes as well as large
slopes where static stability cannot be achieved. We validate
these trajectories by tracking them via a whole-body inverse
dynamics controller in simulation. We show that our approach
can achieve online RHP for 95%-98.6% cycles, outperforming
the baseline (8%-51.2%).

I. INTRODUCTION

In this work, we consider the problem of planning multi-
contact motions for legged robots to traverse uneven terrain
(Fig. 1). This problem is high-dimensional, nonlinear, and
subject to discrete changes of dynamics arising from con-
tact switches [1], [2], [3], [4]. Traditionally, multi-contact
motions are pre-planned offline and then tracked by a
controller [5], [2]. However, in the real world, the pre-
planned motion can become invalid due to perturbations, e.g.
environment changes and state drifts [5], [6]. To adapt to
these changes, online motion (re)-planning is required.

To this end, Receding Horizon Planning (RHP) [6], [7] is
a promising solution. Similar to Model Predictive Control
(MPC) [8], RHP aims at constantly updating the motion
plan for immediate execution based on the state of the robot
and the environment. This is usually achieved by solving
a finite-horizon Trajectory Optimization (TO) problem [9],
which comprises an execution horizon to plan the optimal
actions for execution and a prediction horizon to foresee the
future. Although the prediction horizon is never executed, it
is critical to the success of RHP. Drawing a parallel with
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Fig. 1: Snapshots of simulations. Video is available at
https://youtu.be/oCsOBHHc9XM

Bellman’s equation [10], the prediction horizon can be seen
as an approximation of the value function, which directs the
decision of the execution horizon towards optimal actions
that are favorable for the future.

However, approximating the value function with the pre-
diction horizon can significantly increase the computational
complexity. To reduce the computation burden, [11] and [12]
propose a multi-fidelity TO that relaxes the model accuracy
in the prediction horizon. Nevertheless, such a model-based
formalism can still struggle to compute online when a long
lookahead is needed, e.g. when traversing large slopes.

To further accelerate the computation speed of multi-
contact RHP, we explore the possibility of approximating
the value function with a learned model. To achieve this,
one of the options is to learn a global value function [13]
that can reflect the value of the states for a given environ-
ment. However, this requires a flexible representation that
can parameterize the value function in the coupled state-
environment space [14]. In this work, instead of learning the
value function directly, we propose to learn an oracle that
can predict a local objective—an intermediate goal state that
is favourable towards the completion of a given task—based
on the current robot state, goal position, and environment
model. We then employ a short-horizon TO to compute
the optimal actions for reaching the local objective. This is
achieved by constructing a local value function based on
the local objective and placing it as the terminal cost of the
short-horizon TO. We refer to this novel RHP framework as



Locally-Guided Receding Horizon Planning (LG-RHP). The
oracle is obtained through supervised learning based on the
expert knowledge computed by the long-horizon RHP.

To demonstrate the computational advantage of our ap-
proach, we use LG-RHP to plan the centroidal trajectories
of the humanoid robot Talos [15] in an online RHP setting,
and compare it against the long-horizon RHP as the baseline.
This requires the TO to converge within a time budget—the
duration of the motion to be executed.

We show that LG-RHP can achieve online computation
for 95%-98.6% cycles in the scenarios considered, outper-
forming the baseline (8%-51.2% cycles computed online).
However, due to the prediction error, LG-RHP can reach
ill-posed states, from which the TO fails to converge. We
show that this issue can be mitigated by a data augmentation
technique, in which we add data points to demonstrate how
to recover from the states that cause convergence failures.

Our main contributions are:
• We propose to achieve online RHP by approximating

the value function with a learned oracle that can predict
local objectives as intermediate goals for a given task.
These local objectives are then used to construct local
value functions to guide a short-horizon TO.

• We realize this approach for planning multi-contact
locomotion in an online RHP fashion, and we validate
the dynamic feasibility of the planned trajectories by
tracking them with a whole-body inverse dynamics
controller in simulation.

• We present an incremental training scheme that can
iteratively improve the prediction accuracy of the oracle
by demonstrating recovery actions from the states that
cause convergence failures.

II. RELATED WORK

A. Multi-contact Motion Planning via TO

RHP frameworks usually employ TO to compute the
motion plan, which can be time-consuming due to complex
dynamics. For instance, although we can generate impressive
motions with the whole-body dynamics model [1], [16],
[17], the computation time is far from online usage. This is
because the whole-body model considers the inertia of every
link, which results in high dimensionality and non-convexity.

Alternatively, the centroidal dynamics model [18] has
become popular for multi-contact planning [19], [20], [21].
This model has lower dimension, as it only considers the dy-
namics of the total linear and angular momentum expressed
at the Center of Mass (CoM) [18]. Moreover, approximations
are introduced to the robot kinematics and the momentum
variation induced by the movements of individual robot links.
Unfortunately, this model is still non-convex, which can
make online computation challenging, except when limiting
assumptions (e.g. fixed gait, flat surface) are made [22], [23].

To improve the computation speed, convex inner/outer ap-
proximations [21], [24], [25], [26] of the centroidal dynamics
are proposed. Nevertheless, convex inner approximations can
fail due to a restricted search space [21], while convex outer

approximation can violate the dynamics unless it is gradually
tightened [26]. To combine the benefit of using both the
accurate model and the approximated model, [11] and [12]
present a TO formulation that relaxes the model accuracy
along the lookahead horizon. However, online computation
can still be challenging when a long lookahead is needed.

B. Learning-enhanced Locomotion Planning

Recently, researchers have explored using machine learn-
ing to bootstrap locomotion planning. For instance, [27]
proposes to learn the evolution of centroidal momenta, which
guides an A* planner to generate contact plans. Another
line of research tries to accelerate the computation of TO.
For example, [28], [29], [7] propose to learn (near)-optimal
solutions to warm-start TO. Alternatively, [13], [14], [30],
[31] shorten the planning horizon with a learned global value
function placed as the terminal cost. However, learning a
value function for the multi-contact problem is challenging.
The main difficulty is that the value function is defined in a
coupled state-environment space, which requires a flexible
parameterization that can capture the landscape changes
of the value function with respect to environment varia-
tions [14]. In contrast, we avoid this issue by learning an
oracle to predict intermediate goal states for completing a
given task based on the current state, the final goal, and
the environment, and then we construct local value functions
based on these intermediate goals.

When predicting sequential actions with a learned model,
the prediction accuracy can drop dramatically once the robot
reaches a state that is un-explored in the training data-set.
This problem is known as distribution shift [32], which can
be mitigated by data augmentation, i.e. adding demonstra-
tions from the states that either appeared from the roll-out
of the learned policy [32], [33], or sampled from the expert
policy with injected noise [34]. In this work, we present
a similar but more targeted data augmentation strategy that
only focuses on demonstrating corrective actions from the
states that cause convergence failures.

III. PROBLEM DESCRIPTION

Let us denote by x the robot state and u the control input.
In traditional RHP frameworks, each cycle aims to compute a
motion plan that consists of a state trajectory {x0, ...,xT },
and a control trajectory {u0, ...,uT } over a finite horizon
[0, T ]. This is achieved by solving a TO problem:

min
x0,...,xT ,
u0,...,uT

T∑
t=0

l(xt,ut) (1a)

s.t. xt+1 = F(xt,ut), (1b)

where l is the running cost1 and (1b) is the dynamics
constraint. Each cycle only executes part of the plan until
t∗ < T . We refer to the horizon being executed as Execution
Horizon (EH), and the rest as Prediction Horizon (PH).

1We assume that l also attracts the trajectory towards the final goal xg .
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Fig. 2: As Bellman equation (2) suggests, the EH should not
only optimize its running cost, but also reach a state x̂t∗

that optimizes the value function V (xt∗). Since the value
function is often hard to obtain analytically, traditional RHP
approximates it by expensive computation of trajectories in
the PH. In contrast, based on the initial state x0, the final goal
xg , and the environment Ω, our LG-RHP employs a learned
oracle O to predict the optimal x̂t∗ as a local objective for
guiding a short-horizon TO to plan the EH.

Although the PH never gets executed, computing it is
critical to RHP. To illustrate this, let us consider the TO
formulation from Bellman’s principle of optimality,

V (xt) = min
ut

[l(xt,ut) + V (xt+1)], (2)

where ut is the optimal policy, V (x) is the value function,
xt+1 is the state evolved from the dynamics (1b). Drawing
a parallel to the Bellman equation, we note that the EH—
which approximates the optimal policy—should optimize its
running cost l while leading to a state x̂t∗ that optimizes the
value function V (xt∗). The value function V (xt∗) reflects
the desirability for the EH to arrive at a certain state xt∗ .
Unfortunately, for complex systems, an analytical expression
of the value function is often unavailable. Hence, TO approx-
imates the value function by computing trajectories in the
PH (Fig. 2). Nevertheless, this can increase the complexity
of TO, which hinders online computation.

To speed up the computation, a promising direction is to
replace the PH with an approximate value function model
Ṽ (x). This leads to a short-horizon TO where the planning
horizon terminates at t∗ (the end of EH), and (1) becomes

min
x0,...,xt∗ ,
u0,...,ut∗

t∗−1∑
t=0

l(xt,ut)︸ ︷︷ ︸
EH

+Ṽ (xt∗), (3)

where xt and ut subject to system dynamics (1b). Based
on this idea, [13] proposes to learn a global value function
Ṽ (x|θ) parameterized by θ. However, multi-contact problem
requires the consideration of environment geometry. This
gives rise to the challenge of finding a flexible representation
of the coupled state-environment space [14]. In this work,
instead of learning a value function over the entire state-
environment space, we propose to learn an oracle O to

predict intermediate goal states x̂t∗ that are favorable for
completing a given task, based on the current state x0, final
goal state xg , and environment model Ω:

x̂t∗ = O(x0,xg,Ω). (4)

We refer to these intermediate goal states as local objectives,
and use them to construct local value functions Ṽ (xt∗ |x̂t∗)
to attract the short-horizon TO towards the local objective
x̂t∗ . We call this approach Locally-Guided Receding Horizon
Planning (LG-RHP) and illustrate the idea in Fig. 2.

Although we can learn to predict the optimal policy of
the EH directly from past experiences, the learning error
may lead to trajectories that violate system dynamics and
cause tracking failures. Hence, we decide to compute the EH
using TO, which guarantees the dynamic feasibility. Next, we
present how to implement LG-RHP in the context of multi-
contact planning and the approach for learning the oracle.

IV. METHODS

This section presents the technical details of LG-RHP.
In Section IV-A, we briefly describe the RHP formulation
for planning multi-contact motions, and we refer the reader
to [11] for more details. The long-horizon version of this
formulation is used to compute the training data offline,
while the short-horizon version is employed in LG-RHP for
planning the EH. In Section IV-B, we elaborate the oracle
formulation for multi-contact planning, and we present the
incremental training scheme in Section IV-C.

Furthermore, the following assumptions are made:
• We plan bipedal walking motion, in which a step

consists of 3 phases: pre-swing (double support), swing
(single support), and landing (double support).

• EH always plans a single-step motion, and thus the
oracle predicts the local objective for making one step.

• We model the robot feet as rectangular patches, and we
assign a contact point to each vertex of the rectangle.

• We assume that the environment is made of rectangular
surfaces. We pre-define the sequence of these surfaces
upon which the swing foot lands, while we optimize the
contact timings and the locations (within the surfaces).

• We approximate the kinematic constraints of the CoM
and the relative positions of contacts as convex poly-
topes attached to the feet in contact, with the orienta-
tions aligned to the contact surfaces [35].

A. Receding Horizon Planning for Multi-contact Motions

This section briefly describes the RHP formulation for
planning multi-contact motions (see [11] for more details). In
each planning cycle, given a finite lookahead of n steps, the
current robot state xcur, the goal state xg , and the sequence
of contact surfaces on which the robot will step upon, the
RHP framework computes a motion plan of Nph phases by
solving a TO problem. The motion plan is composed of:

• X = {X 1, ...,XNph}: state trajectory X q of all phases
q ∈ Nph. Each phase is discretized to Nk knots: X q =
{xq

1, ...,x
q
Nk

}. We define the state x = [c⊤, ċ⊤,L⊤]⊤,



where c, ċ ∈ R3 are the CoM position and velocity, and
L ∈ R3 is the total angular momentum.

• U = {U1, ...,UNph}: discretized control trajectory
Uq = {uq

1, ...,u
q
Nk

} of all phases. We denote u =
[f⊤

1 , ...,f
⊤
Nc

]⊤, which collects the contact force fc ∈ R3

of all contact points c ∈ {1, ..., Nc}.
• P = {p1, ...,pn}: a list of contact locations, where

pi ∈ R3 is the contact location of the i-th step.
• T = {t1, ..., tNph}: a list of phase switching timings.

The time step of each phase is τ q = (tq − tq−1)/Nk.
The discretized TO is given by:

min
X ,U ,T ,P

Nph∑
q=1

Jq(X q,Uq) + ϕ(xT ) (5a)

s.t. h(X ,U ,T ,P) ≤ 0, (5b)

where Jq =
∑Nk

k=1 τ
q(c̈qk

⊤c̈qk +Lq
k
⊤
Lq

k) is the running cost
of each phase that encourages smooth trajectory, ϕ(xT ) =
(xT − xg)

⊤(xT − xg) is the terminal cost that attracts the
end state xT towards the final goal xg , and (5b) collects the
constraints described as:

• x0 = xcur, the initial condition constraint.
• 0 ≤ t1 ≤ · · · ≤ tNph ≤ Tmax restricts the phase

switching timings to increase monotonically.
• pi ∈ Si constrains each contact pi to stay on the pre-

assigned surface Si = {p ∈ R3,dT
i p = ei, Sip ≤ si},

where the equality defines the plane containing the
surface and the inequalities bound the surface.

• pi ∈ Ri−1 constrains each contact pi to be within the
reachable space Ri−1 of the previous footstep pi−1.

• cqk ∈ Kl,∀l ∈ Cq restricts the CoM position at the k-th
knot to stay in the reachable space Kl established by
each active contact l ∈ Cq at each phase q.

• xq
k+1 = xq + τ qFq(xq

k,u
q
k), the dynamics constraint

approximated by forward Euler scheme. We consider
the centroidal dynamic model as detailed in [11].

In this work, we use (5) with a long lookahead (n ≥ 2)
to compute the data-set and also employ it as the baseline.
For LG-RHP, we plan optimal actions by (5) with 1-step
lookahead (only covers EH) along with the adapted terminal
cost and the constraints as described in Section IV-B.

B. Oracle Formulation for Multi-Contact Planning

This section presents the oracle formulation for multi-
contact planning and the associated variable definitions
(Fig. 3-a). Following the idea in Section III, we define the
oracle as:

x∗,p∗,T ∗ = O(δl/r,x0,p0,Ω,xg). (6)

The oracle’s output is an intermediate goal configuration after
making a step, which includes: i) target CoM state x∗; ii)
target contact location p∗; iii) target phase switching timings
T ∗ = {t̃1, t̃2, t̃3} for the 3 phases that complete the step. To
predict this goal configuration, we require:

• δl/r ∈ {L,R}: swing foot indicator that informs which
foot (left/right) will be re-positioned.

p∗

α2r2

α1r1 r1

r2

(b)(a)

V1

V4V3

V2

WΣ

p∗
p0

x0 x∗

Fig. 3: (a) Variables definition of the oracle. x0 and p0 are
the initial CoM state and initial swing-foot position. x∗ and
p∗ are the target CoM state and the contact location respec-
tively. Purple patches are initial contact surfaces, while blue
patches are for future steps. Contact surfaces are modeled
by their vertices Vi. Spatial terms are defined in the contact
frame WΣ established at the non-swing foot. (b) The target
contact location p∗ is represented as the vector sum of α1r1
and α2r2, which scale along the contact surface borders
r1, r2 ∈ R3 with the proportion defined by α1, α2 ∈ [0, 1].

• x0: initial CoM state.
• p0: initial contact location of the swing foot.
• Ω = {Sl0,Sr0,S1, ...,Sn}: a finite-preview of the envi-

ronment, where Sl0, Sr0 are the surfaces that the left and
right feet initially stand upon, S1, ...,Sn are the surfaces
that future n steps will land on; We represent each
surface with their vertices S = {V1, ...,V4}, V ∈ R3.

• xg: final goal position (fixed in our case).
We define all spatial terms in the contact-foot frame WΣ,

whose origin locates at the position of the non-swing foot,
and the orientation aligns with the surface in contact.

Furthermore, we introduce an on-surface parameterization
for the target contact location p∗ = α1r1 + α2r2, which
transforms the 3D position as the sum of two vectors, scaling
along the surface borders r1, r2 ∈ R3, and we predict the
scaling factors α1, α2 ∈ [0, 1] (Fig. 3-b).

To guide the LG-RHP, we adapt the short-horizon version
of (5) that only covers the EH with the following changes.
First, we replace the terminal cost with (xT − x∗)⊤(xT −
x∗) + (p1 − p∗)⊤(p1 − p∗) that encourages the end state
xT and the contact location p1 to approach the predicted
targets. Second, we narrow down2 the search space of phase
switching timings ti centered at their predicted values (1−
ϵ)t̃i ≤ ti ≤ (1 + ϵ)t̃i, where ϵ is a user-defined slack.

C. Incremental Training Scheme

This section describes the incremental training scheme
for learning the oracle. The key idea is to improve the
prediction accuracy by adding data points to demonstrate
corrective actions from the states that cause convergence
failures. As depicted in Fig. 4, in each training iteration i,
we train an oracle Oi based on the current data-set D =
D0 ∪ D∗

1 ∪ ... ∪ D∗
i−1, where D0 is the initial data-set, and

2We empirically find that limiting the search space of the phase switching
timings can result in more efficient computation than using costs terms to
bias their decisions.
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Fig. 4: The incremental training scheme concept. Each iter-
ation i trains an oracle Oi on the data-set D that aggregates
the initial data-set D0 and the augmented data-sets D∗

i . The
augmented data-set contains recovery actions (purple), start-
ing from 1-3 cycles before LG-RHP fails (dashed blue circle)
until the cycle converges back to ground-truth trajectory.

D∗
1 ∪ ... ∪ D∗

i−1 are the augmented data-sets from previous
training iterations. The initial data-set D0 is achieved by
rolling out the long-horizon RHP with a 3-step PH3 over a
set of randomly sampled environments, and then extracting
the data points from the EH of each cycle. For generating
the augmented dataset D∗

i , we firstly use LG-RHP with the
currently trained oracle Oi to plan trajectories in a RHP
fashion on the previously sampled environments. Then, we
use the long-horizon RHP to compute recovery actions—
starting from 1-3 cycles before LG-RHP fails—until the
cycle converges back to the ground-truth trajectory (roll-out
of long-horizon RHP on the same terrain). We repeat the
process until there is no further improvement.

V. RESULTS

To highlight the computational advantage of our approach,
we compare Locally-Guided Receding Horizon Planning
(LG-RHP) against the baseline (long-horizon RHP) in an
online setting, in which the TO should converge within a
time budget, i.e. the duration of the motion under execution4.

A. Experiment Setup

We carry out two case studies: walking on moderate slope
(Fig. 5) and large slope (Fig. 6). Planning motions on these
terrains is challenging because the admissible contact force is
limited by the orientation of the surface in contact, requiring
careful selections of contact locations and the timings [26].

We use LG-RHP and the baseline to compute centroidal
trajectories of the humanoid robot Talos [15] in RHP fashion.
Both LG-RHP and the baseline are tested on the terrains that
are unseen during training5. We refer to the trial on each
terrain as an episode. In each cycle, we warm-start the TO
with the solution of two cycles before. A cycle converges

3We choose 3-step PH, as we find a longer lookahead does not improve
the quality of the motion (cost), while increasing the computation time.

4We find the controller can track the planned trajectories without having
large deviations in simulation. Thus, we assume the next-cycle motion starts
from the terminal state planned for the current cycle, and use the motion
duration of the current cycle as the time budget.

5We generate the terrains by uniformly sampling the surface orientations,
and we split them into training (80%) and testing (20%).

TABLE I: Cycle-wise success rate for CS1.

Method Offline Online Time Out Fail (Conv.)

LG-RHP 99.05% 98.63% 0.42% 0.95%
Baseline (1-Step PH) 99.9% 51.21% 48.69% 0.1%

online if the TO is solved within the time budget. If it
fails to converge online, we still let the TO compute until
convergence and continue the episode, unless no solution
is found (fail to converge). In LG-RHP, we employ the
oracle trained with the best prediction accuracy. Lastly, we
validate the planned trajectories by tracking them via a
whole-body inverse dynamics controller [36] in simulation
(Video: https://youtu.be/oCsOBHHc9XM).

B. Implementation Details

We model TO problems in Python and solve them by
the interior-point method of KNITRO [37]. We use the
automatic differentiation framework CasADi [38] to provide
the gradients and the Hessians. Computations are achieved on
a desktop with an Intel i9-CPU (3.6GHz) and 64GB memory.

The oracle is modelled as a Neural Network (NN) of
4 hidden layers, each layer has 256 nodes with ReLu
activation functions. The NN is implemented and trained
with Tensorflow [39]. Furthermore, we find that the data
distributions of the two types of terrains exhibit different
modalities, i.e. when traversing the large slope, the robot has
larger momentum variations than walking on the moderate
slopes. Mixing these data points can result in a discontinuous
and unbalanced data-set, on which a single NN can struggle
to interpolate. As a result, we decide to train separate oracles
for the two types of terrains. The possibility of generalizing
across these two modalities is discussed in Section VI.

C. Case Study 1 (CS1): Moderate Slope

This section presents the experiment result on the terrain
with moderate slopes (Fig. 5). Although quasi-static motions
can be quickly found for this terrain6 [40], we are interested
in planning dynamic walking motions using TO. This pro-
vides a unified approach to handle non-quasi-static cases (e.g.
large slope) and also allows more efficient task completion.

In this case study, we choose the long-horizon RHP
with 1-step PH as the (fastest) baseline. For LG-RHP, we
set the slack of the phase switching timing constraints as
ϵ = 0.6. We find this can increase the chance of finding
a solution (enlarged search space) without sacrificing much
computation speed. Each episode plans maximum 28 cycles.

To show the computational benefit of our approach, we
compare LG-RHP and the baseline based on their cycle-wise
success rate (the percentage of cycles that converged) for
online computation. As Table I lists, in offline mode (un-
limited time budget), both methods can achieve 99% cycle-
wise success rate, while having up to 1% of the cycles fail
to converge. However, when online computation is required
(consider time out), only LG-RHP maintains a success rate of

6This is because the friction cone associated with each contact surface
contains force vectors to cancel the gravity.
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Fig. 5: Snapshots of simulations on moderate slopes (5-12 degrees). We use orange bar to represent the motion duration of
current cycle, and green bar as the computation time for the next cycle.

TABLE II: Average computation time of LG-RHP v.s. aver-
age time budget for the cycles that converged online.

Terrain Avg. Comput. Time Avg. Time Budget

Moderate Slope (CS1) 0.37 +/- 0.19s 1.97 +/- 0.23s
Large Slope (CS2) 0.36 +/- 0.23s 2.01 +/- 0.48s

TABLE III: 95% CI of the average number of cycles that
consecutively converge online (max. 28).

Method 95% CI (CS1)

LG-RHP 23.5 +/- 2.0 cycles
Baseline (1-Step PH) 0.6 +/- 0.3 cycles

98.63%, whereas the baseline drops to 51.21%. Additionally,
as Table II shows, LG-RHP only consumes on average 19%
of the time budget. This suggests the potential of using LG-
RHP in real robot control, as the remaining time budget can
be allocated to the overheads, e.g. data transmission.

Moreover, to demonstrate that LG-RHP can consecutively
achieve online RHP in an episode, we check its 95% Confi-
dence Interval (CI) on the number of cycles that continually
converged online. As Table III shows, the CI of LG-RHP
is 23.5 +/- 2.0 cycles, indicating that LG-RHP can perform
online computation for 76.8% to 91.1% cycles of an episode.
In contrast, the baseline CI is 0.6 +/- 0.3 cycles, implying
its incapability of achieving online RHP. A sequence of
snapshots of our simulation can be seen in Fig. 5.

D. Case Study 2 (CS2): Large Slope

This section considers the large slope terrain (Fig. 6),
on which the robot cannot maintain static balance. For this
terrain, the baseline requires 2-step PH to foresee the large
slope early enough and start building its momentum.

Each episode starts from the cycle when the large slope
is inside the lookahead horizon and ends at the cycle when
the robot gets off the large slope (6 cycles). For LG-RHP,
we define the slack of the phase switching timing constraints
ϵ = 0.15, as empirically determined to give a good balance
between the success rate and the computation speed.

In Table IV, we compare the cycle-wise success rate of
LG-RHP and the baseline. In offline mode, the success
rate of the baseline and LG-RHP are 99.5% and 95.99%
respectively, while the rest of the cycles fail to converge.

TABLE IV: Number of cycles converged online for CS2.

Method Offline Online Time Out Fail (Conv.)

LG-RHP 95.99% 95.0% 0.99% 4.01%
Baseline (2-Step PH) 99.5% 7.99% 91.51% 0.5%

TABLE V: Episodic success rate for CS2.

Method Success Time Out Fail (Conv.)

LG-RHP 76.1% 3.8% 20.1%
Baseline (2-Step PH) 0.0% 98.4% 1.6%

However, when it comes to online mode, the cycle-wise
success rate of LG-RHP stays at 95.0%, whereas the baseline
decreases to 7.99%. Furthermore, as indicated in Table II,
LG-RHP only consumes on average 18% of the time budget.

To examine whether the online RHP can be consecutively
achieved in an episode, we compare the episodic success
rate of each method. We define an episode as successful if
all the cycles have their TO converged online. As Table V
lists, the baseline never completes an episode in an online
fashion (0.0%), and 98.4% episodes failed due to time out.
In contrast, LG-RHP can achieve online RHP over 76.1%
episodes, while only 3.8% of the failures are due to time
out, and the rest (20.1%) are caused by convergence failures
induced by the prediction error of the oracle. A sequence of
simulation snapshots are presented in Fig. 6.

E. Improving Prediction with Incremental Training Scheme

This section demonstrates the effectiveness of our incre-
mental training scheme (Section IV-C). In Table VI, we list
the episodic success rate of LG-RHP achieved on the training
environments with oracles trained from different iterations of
the data augmentation process. Our result shows that adding
corrective data points of interest can increase the prediction
accuracy, which improves the episodic success rate of LG-
RHP. The success rate saturates after 5 training iterations.

VI. DISCUSSION

We empirically show that LG-RHP can achieve online
RHP of multi-contact motions while consuming on average
19% of the time budget. This suggests that LG-RHP can be
used for real-world robot control, as it leaves sufficient time
for overheads, e.g. data transmission.
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Fig. 6: Snapshots of simulations on the large slope (17-25 degrees). The blue block is the large slope (25 degrees), while
the rest are moderate slopes (5-12 degrees). The robot tends to build momentum to achieve dynamic balancing on the large
slope. We show that LG-RHP can be used online, as the computation time of the next cycle (green bar) is smaller than the
motion duration of the current cycle (orange bar).

TABLE VI: Episodic success rate of different iterations of the
incremental training scheme on the training environments.

Terrain Iter. 1 Iter. 2 Iter. 3 Iter. 4 Iter. 5

Moderate (CS1) 67.2% 76.2% 80.3% 81.8% 82.1%
Large (CS2) 71.5% 75.3% 79.5% 80.4% 81.0%

However, as mentioned in Section V-B, we find that the
data points for the two types of terrains exhibit different
modalities. This can impose challenges when training a
single NN on the combined data-set. Although we capture
the two modalities by using separate NNs, it is worthwhile to
explore a more unified approach that can handle multi-modal
data, e.g. using mixture density networks [41].

Furthermore, LG-RHP struggles in the following two
cases. First, the oracle has prediction errors due to imperfect
fitting and insufficient data coverage. This can lead the robot
to ill-posed states, and cause failures to converge. Although
our incremental training scheme can mitigate this issue,
it is hard to reach a 100% success rate. To improve the
performance, we can use a Recurrent Neural Network (RNN)

or impose safety constraints. Second, although LG-RHP
features a short-horizon TO, it is still a nonlinear problem
that may time out. To alleviate this issue, we can reduce
the number of decision variables by representing trajectories
with parameterized curvatures, e.g. Bezier Curves [21].

Lastly, multi-contact problems necessarily require discrete
decisions, i.e. the sequence of contact surfaces [40] and the
gait pattern [42]. It would be beneficial to extend the oracle
to predict these discrete choices.

VII. CONCLUSION

We present Locally-Guided Receding Horizon Planning
(LG-RHP)—a novel RHP framework for planning multi-
contact motions. The proposed approach features a learned
oracle that can predict local objectives, which are used for
building local value functions for guiding a short-horizon
TO. Our experiment shows that LG-RHP can achieve on-
line computation for 95%-98.6% cycles, which outperforms
the baseline (8%-51.2%). Moreover, LG-RHP only requires
around 19% of the time budget, suggesting the potential for
real-robot control. However, due to the prediction error, LG-



RHP does not achieve 100% success rates. In future work,
we plan to improve the success rate by using RNN or adding
safety constraints. We also plan to test LG-RHP on real robot.
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