
JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, MAY 2023 1

Online Multi-Contact Receding Horizon Planning
via Value Function Approximation

Jiayi Wang1, Sanghyun Kim3, Teguh Santoso Lembono2, Wenqian Du1, Jaehyun Shim1, Saeid Samadi1,
Ke Wang1, Vladimir Ivan1, Sylvain Calinon2, Sethu Vijayakumar1,4, and Steve Tonneau1

Abstract—Planning multi-contact motions in a receding hori-
zon fashion requires a value function to guide the planning with
respect to the future, e.g., building momentum to traverse large
obstacles. Traditionally, the value function is approximated by
computing trajectories in a prediction horizon (never executed)
that foresees the future beyond the execution horizon. However,
given the non-convex dynamics of multi-contact motions, this
approach is computationally expensive. To enable online Re-
ceding Horizon Planning (RHP) of multi-contact motions, we
find efficient approximations of the value function. Specifically,
we propose a trajectory-based and a learning-based approach.
In the former, namely RHP with Multiple Levels of Model
Fidelity, we approximate the value function by computing the
prediction horizon with a convex relaxed model. In the latter,
namely Locally-Guided RHP, we learn an oracle to predict local
objectives for locomotion tasks, and we use these local objectives
to construct local value functions for guiding a short-horizon
RHP. We evaluate both approaches in simulation by planning
centroidal trajectories of a humanoid robot walking on moderate
slopes, and on large slopes where the robot cannot maintain static
balance. Our results show that locally-guided RHP achieves the
best computation efficiency (95%-98.6% cycles converge online).
This computation advantage enables us to demonstrate online
receding horizon planning of our real-world humanoid robot
Talos walking in dynamic environments that change on-the-fly.

Index Terms—Multi-Contact Locomotion, Legged Locomotion,
Humanoid Robots, Optimization and Optimal Control

I. INTRODUCTION

THIS article considers the problem of computing motion
plans for legged robots to traverse uneven terrain (non-

horizontal surfaces), where the planner needs to find a se-
quence of contacts, along with a feasible state trajectory. This
problem is known as multi-contact motion planning, which is
high-dimensional, nonlinear, and subject to discrete changes of
dynamics that arise from breaking and making contacts [1]–
[8]. Given these complexity, traditional robot control methods
often plan the multi-contact motions offline, and then track
them with a controller [2], [6], [9], [10]. However, when
deploying legged robots in the real world, they can encounter
environment changes and state drifts. These perturbations can
cause the pre-planned motion to become invalid, and online

1 The authors are with the School of Informatics, The University of
Edinburgh, United Kingdom.

2 The authors are with the Idiap Research Institute, Switzerland and with
EPFL, Switzerland.

3 The author is with the Department of Mechanical Engineering, Kyung
Hee University, South Korea.

4 The author is with Artificial Intelligence Programme, The Alan Turing
Institute, United Kingdom.

e-mail: jiayi.wang@ed.ac.uk

Fig. 1. Snapshots of our real-world experiments on Talos. Video is available
at https://youtu.be/oMo 50XIE24.

(re)-planning is needed [9], [11]–[13]. To facilitate reliable
operation in the real world, our long-term objective is to
enable legged robots with the capability to online re-plan their
motions.

Towards this end, Receding Horizon Planning (RHP) [11],
[12] can be a promising solution. Similar to Model Predictive
Control (MPC) [14]–[17], Receding Horizon Planning (RHP)
aims to constantly update the motion plan for immediate
execution based on the state of the robot and the environment.
This is often achieved by solving a finite-horizon Trajectory
Optimization (TO) problem [18], where the planning horizon
is composed of an execution horizon that plans the optimal
actions for execution, and a prediction horizon that foresees the
future (see an example in Fig. 2). Although Receding Horizon
Planning (RHP) frameworks never executes the prediction
horizon, it plays an important role to the success of RHP.
Viewing the RHP problem from Bellman’s perspective [19],
the prediction horizon can be seen as an approximation of the
value function—which predicts the feasibility and the future
effort for achieving the task starting from a given robot state.
Having such a value function is often critical for guiding the
execution horizon towards optimal actions that are beneficial
for the future.

Traditionally, Receding Horizon Planning (RHP) frame-
works often compute the entire horizon with an accurate

https://youtu.be/oMo_50XIE24


JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, MAY 2023 2

Execution Horizon Prediction Horizon

Fig. 2. In Receding Horizon Planning (RHP), the planning horizon often
consists of two parts: 1) execution horizon which plans the motion for
immediate execution, and 2) prediction horizon (not executed) that looks into
the future. The prediction horizon serves as an approximation of the value
function, which guides the execution horizon by telling whether the decisions
made in the execution horizon can facilitate the completion of the task or not.

dynamics model. This ensures the execution horizon is always
dynamically consistent, while in the meantime allowing the
prediction horizon to approximate the value function as accu-
rately as possible. However, planning the prediction horizon
with an accurate model can result in expensive computation,
especially when long planning horizon and complex dynamics
need to be considered, i.e., planning multi-contact motions to
traverse large slopes. In this work, we consider the traditional
RHP approach as our baseline.

To accelerate the computation speed, one of the options is
to reduce the computation burden required for approximat-
ing the value function. Following this idea, we propose a
trajectory-based approach and a learning-based approach that
can improve the computational efficiency for achieving value
function approximation. We compare these two approaches in
the context of planning centroidal trajectories of the humanoid
robot Talos [20] walking on uneven terrain.

More specifically, our trajectory-based approach—which we
call Receding Horizon Planning with Multiple Levels of Model
Fidelity—follows the traditional formalism that models the
value function with the trajectories planned in the prediction
horizon. However, instead of considering accurate dynam-
ics models, we relax the model accuracy of the prediction
horizon. This allows us to reduce the overall complexity of
the RHP problem. In this article, we explore and compare
three candidate multi-fidelity RHPs, where the prediction
horizon considers different convex relaxations of the centroidal
dynamics model (examples shown in Fig. 5).

Alternatively, we can further improve the computation ef-
ficiency by approximating the value function with a learned
model [21]. Nevertheless, learning a value function for multi-
contact problem can be challenging. The main difficulty is that
the value function is defined in a coupled state-environment
space, which requires a flexible representation to capture
the landscape changes of the value function with respect to
different environments [22]. In this article, we circumvent
this issue by learning an oracle to predict local objectives
(intermediate goal states towards the completion of a given
task) based on the current robot state, goal position, and the
environment model. We then construct local value functions

based on these local objectives, and use them to guide a
short-horizon RHP to plan the execution horizon towards
the predicted local objectives. We refer to this approach as
Locally-Guided Receding Horizon Planning (LG-RHP). To
obtain the oracle, we take a supervised learning approach,
where we train the oracle from the dataset offline computed
by the traditional RHP that computes the entire horizon with
an accurate model.

To evaluate the performance of multi-fidelity RHP and
locally-guided RHP, we consider an online receding horizon
planning setting, where we require each cycle to converge
within a time budget—the duration of the motion to be
executed (execution horizon) for the current cycle. From our
experiment result, we obtain the following insights. First, the
result of multi-fidelity RHP demonstrates that it is possible
to achieve online computation by trading off the model ac-
curacy in the prediction horizon. However, this can affect
the accuracy of the value function modeled by the prediction
horizon. As a consequence, our multi-fidelity RHP has the
risk to arrive at ill-posed states, from which the TO can fail
to converge. Additionally, we also notice that incorporating
angular dynamics in the prediction horizon is critical to the
convergence of multi-contact RHP. On the other hand, as
locally-guided RHP features a shortened planning horizon, it
achieves the highest online convergence rate (95.0%-98.6%
cycles computes online) compared to the traditional RHP
(baseline) and multi-fidelity RHP. Nevertheless, due to the
prediction error of the oracle, our locally-guided RHP can also
arrive at ill-posed states and fail to converge. We show that
this issue can be mitigated by a data augmentation technique,
in which we add datapoints to demonstrate how to recover
from the states that cause convergence failures.

To validate our methods, we verify the dynamic feasibility
of the planned trajectories by tracking them with a whole-body
inverse dynamics controller [23] in simulation. Furthermore,
we validate locally-guided RHP with real-world experiments,
where we demonstrate online receding horizon planning of
multi-contact motions on our humanoid robot Talos in dy-
namically changing environments (see examples in Fig. 1
and Fig. 11). The video of the experiments can be found in
https://youtu.be/oMo 50XIE24.

A. Contributions

We propose two novel methods that can achieve online
Receding Horizon Planning (RHP) of centroidal trajectories
for multi-contact locomotion. The key idea of our methods
is to reduce the computation complexity by finding compu-
tationally efficient approximations of the value function. Our
contributions are:

• Receding Horizon Planning with Multiple Levels of
Model Fidelity, where we approximate the value function
by computing trajectories in the prediction horizon while
considering convex relaxed models. This allows us to
reduce the overall computation complexity of the TO and
facilitates online computation.

• Locally-Guided Receding Horizon Planning (LG-RHP),
where the value function is approximated with a learned

https://youtu.be/oMo_50XIE24


JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, MAY 2023 3

oracle. This oracle is designed to predict local objectives
as intermediate goal states for completing a given task,
while taking into account the environment model around
the robot. We use these local objectives to build local
value functions for guiding a short-horizon TO to plan
the execution horizon.

• Extensive evaluations and analysis on the computation
performance of multi-fidelity RHP and locally-guided
RHP, along with the validation of the dynamic feasibility
of the planned trajectories using a whole-body inverse
dynamics controller in simulation.

• Real-world experiments on the humanoid robot Talos
that demonstrate the effectiveness of our locally-guided
RHP approach in achieving online multi-contact receding
horizon planning on uneven terrain and environments
with dynamic changes.

B. Comparison with Our Previous Work and Article Outline

This article is an extension of our earlier conference pa-
pers [24] and [25], where we initially proposed the idea of
multi-fidelity RHP and the locally-guided RHP. Compared
to our previous work, the novel content of this article in-
cludes the following parts. First, we unify the description
of the RHP problem and the concept of multi-fidelity RHP
and locally-guided RHP under the framework of Bellman’s
principle of optimality [19]. Second, we conduct a rigorous
simulation evaluation on the computation performance of the
multi-fidelity RHP and the locally-guided RHP over a set
of multi-contact scenarios. Third, we perform multiple real-
world experiments on our humanoid robot Talos showing the
efficacy of locally-guided RHP in achieving online receding
horizon planning. We consider environments that can change
dynamically during run-time and challenging uneven terrains.
Lastly, we provide a qualitative analysis on the advantages and
disadvantages of multi-fidelity RHP and locally-guided RHP.

The rest of the paper is organized as followings. In Sec-
tion II, we review the literature regarding to optimization-
based multi-contact locomotion planning, as well as the
learning-based methods for accelerating their computation
speed. In Section III, we describe the RHP problem, and
introduce the principle of multi-fidelity RHP and locally-
guided RHP. From Section IV to Section VII, we present the
technical approach of multi-fidelity RHP and locally-guided
RHP. Afterwards, in Section VIII, we present our simulation
studies. Then, in Section IX, we demonstrate the real-world
experiment result on our humanoid robot Talos. Lastly, we
discuss the advantages and disadvantages of multi-fidelity
RHP and locally-guided RHP in Section X, and we conclude
the article in Section XI.

II. RELATED WORK

A. Multi-Contact Motion Planning via TO

Planning multi-contact motions to traverse challenging ter-
rain necessarily requires the consideration of the whole-body
dynamics of the robot. This model takes into account the
mass and inertia of every link and relates the base and joint

accelerations with respect to the joint torques. In the past, TO-
based methods have demonstrated impressive motions using
the whole-body dynamics model [1], [26]–[30]. However,
these approaches often struggle to compute online due to the
high-dimensionality and non-convexity of the model, unless
we predefine the contact timings and locations [31], [32].

Alternatively, we can plan multi-contact motions with the
centroidal model [33], [34]. This model has lower dimen-
sionality since it only considers the dynamics of the total
linear and angular momenta expressed at the Center of Mass
(CoM). Moreover, approximations are introduced on the robot
kinematics and the momentum variation results from the mo-
tions of each individual link. Although these approximations
may cause failures for achieving a corresponding whole-body
motion, the centroidal model is getting popular for multi-
contact planning due to its reduced dimensionality [34]–
[40]. Unfortunately, the centroidal model is still non-convex1

except when limiting assumptions (pre-defined gait, flat/co-
planar surfaces) are made [41]–[43]. Such non-convexity often
prevents the TO to compute online.

To accelerate the computation, convex approximations of
the centroidal model are proposed. For instance, [40], [44],
[45] propose convex inner approximation that searches for a
solution within a subset of all possible trajectories. Despite
their fast computation, convex inner approximation may fail
to find a solution due to the reduced search space [40].
Alternatively, [46]–[48] present convex outer approximation
that introduces convex relaxations into the centroidal dynamics
model. Although the model complexity is reduced, convex
outer approximation may generate motions that violate the
system dynamics and cause tracking failures. To address
this issue, [46] propose to iteratively tighten the relaxation.
However, this requires the design of a customized optimization
solver.

In this article, we introduce multi-fidelity RHP, where in a
single optimization formulation, we employ an accurate model
in the execution horizon and a relaxed model in the prediction
horizon. This formulation is straightforward to implement
and can be solved directly with off-the-shelf Non-Linear
Programming (NLP) solvers. Furthermore, the combination
of the accurate model and the relaxed model guarantees the
dynamic consistency of the motion to be executed (execution
horizon), while in the meantime reduce the overall computa-
tion complexity of the TO problem.

A similar approach to our multi-fidelity RHP method is
also introduced in [49]. In that work, the authors present
a MPC framework based on Differential Dynamic Program-
ming (DDP) that combines whole-body dynamics and a non-
convex model with reduced order (single-rigid body model [2],
[37]) in a single formulation. Successful demonstrations of
2D quadrupedal locomotion and humanoid running has been
shown on flat surfaces. In contrast, our emphasis is RHP of
centroidal trajectories for a humanoid robot to traverse uneven
terrain. This problem requires careful selection of contact
locations and timings, as well as the modulation of the cen-

1The centroidal model is non-convex due to the cross products (bilinear
terms) from the angular dynamics.



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, MAY 2023 4

troidal momenta. In this regard, the relaxed model employed
in the prediction horizon needs to be carefully designed, as
the quality of the model can significantly affect the accuracy
of the value function approximated by the prediction horizon.
Furthermore, instead of searching for non-convex models with
reduced order, we focus on finding convex relaxations for the
prediction horizon.

B. Learning to Accelerate Multi-Contact Motion Planning

Recently, machine learning techniques have gained popular-
ity for bootstrapping the computation of locomotion planning.
For instance, [50] proposes to learn the evolution of the cen-
troidal momenta, which can guide an A* planner to generate
contact plans. Another line of research tries to accelerate
the computation speed of TO. For example, [12], [17], [51]
propose to learn (near)-optimal solutions to warm-start TO.
Alternatively, [21], [22], [52], [53] propose to shorten the plan-
ning horizon with a learned value function model placed as
the terminal cost. Following this idea, our locally-guided RHP
focuses on learning a value function model for multi-contact
planning. However, learning a value function for the multi-
contact problem is challenging. The main difficulty is that the
value function is defined in a coupled state-environment space,
which requires a flexible parameterization that can capture
the landscape changes of the value function with respect
to environment variations [22]. To deal with this issue, we
propose to learn an oracle to predict intermediate goal states
for completing a given task based on the current state, the final
goal, and the environment, and then we construct local value
functions based on these intermediate goal states.

Nevertheless, when predicting sequential actions with a
learned model, the prediction accuracy can decrease dramat-
ically once the robot reaches a state that is unexplored in
the training dataset. This problem is known as distribution
shift [54], which can be mitigated by data augmentation, i.e.
adding demonstrations from the states that either appeared
from the roll-out of the learned policy [54], [55], or sampled
from the expert policy with injected noise [56]. In this work,
we present a similar data augmentation strategy which focuses
on demonstrating corrective actions from the states that cause
convergence failures.

III. PROBLEM DESCRIPTION

Let us denote by x ∈ Rn the robot state and u ∈ Rm

the control input. In Receding Horizon Planning (RHP), each
cycle is required to compute a motion plan for immediate ex-
ecution in the next cycle. We define such a motion plan as the
composition of a state trajectory {x0, . . . ,xT } starting from a
given initial state x0, and a control trajectory {u0, . . . ,uT }.
To compute this motion plan, Receding Horizon Planning
(RHP) frameworks usually need to solve a TO problem with
the general form complying with the Bellman’s equation [19]:

min
x0,...,xT ,
u0,...,uT

T−1∑
t=0

l(xt,ut) + V (xT ) (1a)

s.t. xt+1 = F(xt,ut), (1b)

where l(·) is the running cost, V (·) is the value function,
(1b) is the system dynamics constraint, and F(·) represents
the discrete-time dynamics of the robot. As Bellman suggests,
the optimal policy—approximated by the motion plan to be
executed—should not only minimize its running cost l, but also
lead to a state xT that optimizes the value function V (xT ).
By definition, the value function is modeled as the optimal
cost of an infinite-horizon trajectory starting from xT till the
completion of the task, while respecting the system dynamics
constraint (Fig. 3-a):

V (xT ) = min
xT ,...,x∞,
uT ,...,u∞

∞∑
t=0

l(xt,ut) (2a)

s.t. xt+1 = F(xt,ut). (2b)

The value function V (xT ) reflects the feasibility and the
future effort required for accomplishing the given task starting
from any state xT , and provides gradients to direct the
optimal policy (motion to be executed) towards a state xT

that is favorable for the future. However, evaluating the value
function with an infinite-horizon trajectory is non-trivial, and
hence we need approximations.

Traditionally, RHP frameworks approximate the value func-
tion by considering a finite-horizon trajectory starting from the
time T to Tp ≪ ∞:

Ṽ (xT ) = min
xT ,...,xTp ,
uT ,...,uTp

Tp−1∑
t=T

l(xt,ut) + ϕ(xTp
), (3a)

s.t. xt+1 = F(xt,ut), (3b)

where the optimal cost from the time Tp to infinity is lumped
into the terminal cost term ϕ(xTp). By combining (3) into
(2), we can achieve a TO problem with an extended planning
horizon (Fig. 3-b):

min
x0,...,xTp ,
u0,...,uTp

T−1∑
t=0

l(xt,ut)︸ ︷︷ ︸
Optimal Policy (EH)

+

Tp−1∑
t=T

l(xt,ut) + ϕ(xTp
)︸ ︷︷ ︸

Value Function Approximation (PH)

(4a)

s.t. xt+1 = F(xt,ut), (4b)

where we can split the planning horizon into an Execution
Horizon (EH) that computes optimal policy (the motion plan
to be executed) from the time 0 to T , and a Prediction Horizon
(PH) that approximates the value function by computing
trajectories from the time T to Tp.

Although (4) has a finite planning horizon, online com-
putation is still challenging for complex dynamical systems
such as legged robots. The computation complexity mainly
comes from the planning of the Prediction Horizon (PH) under
the consideration of the nonlinear dynamics constraints (6b),
which increases the dimensionality and non-convexity of an
already challenging problem.

To improve the computation efficiency, a promising direc-
tion is to mitigate the computation burden required for value
function approximation. In this work, we propose two novel
methods that can approximate the value function with reduced
computation complexity.



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, MAY 2023 5

∞TExecution
Horizon

0

Execution
Horizon

Prediction Horizon

Prediction
Horizon

T

a) Infinite-Horizon RHP

Tp0

V (xT ) = min
∞∑
t=T

l(xt,ut)
xT , ...,x∞
uT , ...,u∞

s.t. xt+1 = F(xt,ut)

Ṽ (xT ) = min
Tp−1∑
t=T

l(xt,ut) + ϕ(xTp)xT , ...,xTpuT , ...,uTp

s.t. xt+1 = F(xt,ut) s.t. xt+1 = F̃(xt,ut)

c) Multi-Fidelity RHPb) Traditional RHP

Trajectory-based Approx. Learning-based Approx.

Execution
Horizon

T0

Ṽ (xT |x∗)

d) Locally-Guided RHP

Oracle

x∗ = O(x0,xg,Ω)

Execution
Horizon

Prediction
Horizon

T Tp0

Fig. 3. a) Infinite-horizon RHP problem that models the value function with the prediction horizon of an infinite length; b) Traditional RHP approach which
approximates the value function by considering a finite-length prediction horizon (from time T to Tp). Nevertheless, traditional RHP struggles to computes
online, as the prediction horizon considers an accurate dynamics model (usually non-convex); c) Multi-fidelity RHP, where we improve the computation
efficiency by relaxing the model accuracy in the prediction horizon; d) Locally-Guided RHP shortens the planning horizon by approximating the value
function with a learned model.

Our first method follows the trajectory-based formalism
which approximates the value function by computing a pre-
diction horizon that looks into the future. However, instead of
considering an accurate system dynamics constraint (usually
non-convex) in the prediction horizon, we propose to plan
the prediction horizon with a relaxed system dynamics model.
This gives rise to a novel TO formulation features a planning
horizon with multiple levels of model fidelity (Fig. 3-c):

min
x0,...,xTp ,
u0,...,uTp

T−1∑
t=0

l(xt,ut)︸ ︷︷ ︸
EH (Accurate)

+

Tp−1∑
t=T

l(xt,ut) + ϕ(xTp)︸ ︷︷ ︸
PH (Relaxed)

, (5a)

s.t. ∀t ∈ [0, T ] :

xt+1 = F(xt,ut), (Accurate Model) (5b)
∀t ∈ [T, Tp] :

xt+1 = F̃(xt,ut), (Relaxed Model) (5c)

where the EH remains to compute the optimal polity with the
accurate dynamics model (5b), while the PH approximates
the value function with the relaxed dynamics model (5c).
We call this approach as Receding Horizon Planning with
Multiple Levels of Model Fidelity or Multi-Fidelity RHP (MF-
RHP) for short. Comparing to the traditional TO formalism
(4), our multi-fidelity RHP ensures the Execution Horizon
(EH) is always dynamically consistent, while in the meantime
reducing the overall computation complexity of the TO. In this
work, we present and test three candidate multi-fidelity RHPs,

where the Prediction Horizon (PH) considers different convex
relaxations of the centroidal dynamics model.

Alternatively, another option for approximating the value
function is to learn a parametric model Ṽ (x|θ) from the past
experience [21]. Given this learned value function model, we
can shorten the planning horizon to only cover the Execution
Horizon (EH):

min
x0,...,xT ,
u0,...,uT

T−1∑
t=0

l(xt,ut)︸ ︷︷ ︸
Optimal Policy (EH)

+ Ṽ (xT |θ),︸ ︷︷ ︸
Learned Value Function

(6a)

s.t. xt+1 = F(xt,ut), (6b)

However, learning a value function for the multi-contact
problem can be challenging. The difficulty mainly comes from
the consideration of the environment model. This introduces
the challenge of finding a flexible parameterization that can
represent the value function in the coupled state-environment
space [22]. To tackle this issue, we propose to learn an oracle
O that can predict intermediate goal states x∗ for completing
a given task, based on current robot state x0, the final goal
state xg , and the environment model Ω:

x∗ = O(x0,xg,Ω). (7)

We refer to these intermediate goal states as local objectives,
and we use them to construct local quadratic value functions:

Ṽ (xT |x∗) = (xT − x∗)⊤(xT − x∗). (8)



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, MAY 2023 6

We then use these local value functions to guide the short-
horizon TO (6) to plan the Execution Horizon (EH) towards
the predicted local objectives x∗. We call this approach as
Locally-Guided Receding Horizon Planning (LG-RHP) and
illustrate the idea in (Fig. 3-d). Although it is possible to
learn to predict the optimal policy of the Execution Horizon
(EH) directly from the past experiences, the learning error may
lead to trajectories that violate system dynamics and cause
tracking failures. Hence, in this work we decide to compute
the Execution Horizon (EH) using TO, which guarantees the
dynamic feasibility of the motion.

Next, we present the technical details of our methods
in the context of multi-contact motion planning. In Sec-
tion IV, we firstly describe the assumptions made in our work.
Then, in Section V, we present the baseline—the traditional
RHP—which computes the Execution Horizon (EH) and the
Prediction Horizon (PH) with an accurate dynamics model.
Afterwards, in Section VI and Section VII, we introduce
the technical approach of multi-fidelity RHP and the locally-
guided RHP.

IV. ASSUMPTIONS

We make following assumptions in our work:

• We focus on planning centroidal trajectories of a hu-
manoid robot walking on uneven terrain. We define each
step contains three phases: pre-swing (double support),
swing (single support), and post-landing (double support).
This gives rise to a multi-phase TO formulation, where in
each phase the dynamics and kinematics constraints are
characterized by the contact configuration of that phase.

• We define the Execution Horizon (EH) always covers
the motion plan for making a single step (the first three
phases), while the Prediction Horizon (PH) can plan
ahead for multiple steps. The oracle is designed to predict
the local objective for making one step.

• We model the robot feet as rectangular patches. As
commonly done, we model each vertex of the rectangle
as a contact point.

• We approximate the kinematics constraints of the CoM
and the relative positions of the contacts as convex
polytopes. To generate these polytopes, we firstly offline
sample a large amount of robot configurations, from
which we can extract CoM positions and foot locations
in a given end-effector frame. Then, we compute the
polytopes as the convex hull of these CoM positions and
foot locations [57].

• We model the environment as a set of rectangular contact
surfaces. We predefine the sequence of these contact
surfaces in which the swing foot will land upon, while
we optimize the contact locations (within the surfaces)
and the contact timings.

• The swing foot trajectory is interpolated after we compute
the centroidal motion plan. This is achieved by connect-
ing the planned contact locations with a spline.

V. TRADITIONAL RHP FORMULATION FOR
MULTI-CONTACT MOTION PLANNING

In this section, we present the traditional RHP approach for
planning centroidal trajectories of a humanoid robot walking
on uneven terrain. This traditional RHP is considered as the
baseline of our work.

We describe the RHP problem as follows. In each planning
cycle, given a finite planning horizon of n steps, an initial robot
state xinit, a final goal state xg , and a sequence of contact
surfaces {S1, . . . ,Sn} that the robot will step upon, the RHP
framework aims to compute a multi-phase motion plan consists
of a state trajectory X , a control trajectory U , a sequence
of contact locations P and a list of phase switching timings
T . We elaborate the definition of these decision variables as
follows:

• X = {X1, . . . , XNph}: state trajectory Xq of all phases
q ∈ {1, . . . , Nph}. In each phase, we discretize the state
trajectory into Nk knots: Xq = {xq

1, . . . ,x
q
Nk

}. We
denote the state vector as x = [c⊤, ċ⊤,L⊤]⊤, where
c ∈ R3 is the CoM position, ċ ∈ R3 is the CoM velocity,
L ∈ R3 is the total angular momentum expressed at the
CoM.

• U = {U1, . . . , UNph}: control input trajectory of all
phases. Same as the state trajectory, we discretize each
phase of the control trajectory into Nk knots: Uq =
{uq

1, . . . ,u
q
Nk

}. The control input vector is defined as
u = [f⊤

1 , . . . ,f
⊤
Nc

]⊤ which collects the contact force
fc ∈ R3 of all contact points c ∈ {1, . . . , Nc}.

• P = {p1, . . . ,pn}: a sequence of footstep locations
(center of the foot), where pi ∈ R3 denotes the contact
location of the i-th step. The orientation of each footstep
is defined as a constant, where the roll and the pitch
are given by the orientation of the corresponding contact
surface Si, and the yaw is set to zero degrees.

• T = {t1, . . . , tNph}: a list of phase switching timings,
where tq indicates the timing when the motion plan
switches from phase q to phase q + 1. Based on these
phase switching timings, we can define the time step of
each phase q as τ q = (tq − tq−1)/Nk.

To compute the motion plan, the traditional RHP usually
solves a TO problem given by:

min
X ,U ,T ,P

Nph∑
q=1

Jq(Xq, Uq) + ϕ(xT ) (9a)

s.t. x0 = xinit (9b)
0 ≤ t1 ≤ · · · ≤ tNph ≤ Tmax (9c)
∀i ∈ {1, . . . , n}:

pi ∈ Si (9d)
pi ∈ Ri (9e)

∀q ∈ {1, . . . , Nph},∀k ∈ {1, . . . , Nk}:
cqk ∈ Kq

l , ∀l ∈ Lq
cnt (9f)

xq
k+1 = Fq(xq

k,u
q
k). (9g)

The cost function of (9) includes the running cost Jq of
each phase and the terminal cost ϕ(xT ). We define the running
cost Jq =

∑Nk

k=1 τ
q(c̈qk

⊤c̈qk +Lq
k
⊤
Lq

k), which encourages the



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, MAY 2023 7

TO to generate smooth trajectories by penalizing large CoM
accelerations and angular momentum. The terminal cost is
defined as ϕ(xT ) = (xT − xg)

⊤(xT − xg), which attracts
the terminal state xT to approach the final goal state xg .

To ensure the motion is dynamically consistent, we intro-
duce constraints (9b)–(9g) described as follows:

• (9b) enforces the state trajectory to start from the given
initial state xinit.

• (9c) guarantees the phase switching timings tq to increase
monotonically and bounds the maximum motion duration
tNph by Tmax.

• (9d) restricts each contact location pi to stay on the pre-
assigned contact surface Si = {p ∈ R3,dT

i p = ei, Sip ≤
si}, where the equality sets the plane containing the
surface and the inequalities define the boundaries of the
surface.

• (9e) implements the relative reachability constraint of the
foot steps, where each contact location pi is limited by
a reachable workspace Ri with respect to the 6-D pose
of the previous footstep pi−1. We represent the reachable
workspace as a convex polytope Ri : {pi ∈ R3,Ri(p

i−
pi−1) ≤ ri}, along with the orientation aligns to the
posture of the previous footstep [57], [58].

• (9f) is the CoM reachability constraint. In each phase q,
the CoM position at k-th knot is restricted to stay within
the reachable space Kq

l established by each foot l in active
contact. Similarly, we approximate the reachable space as
a convex polytope Kq

l : {cqk ∈ R3,Kq
l (c − pq

l ) ≤ kq
l },

where pq
l ∈ R3 is the location of the active contact l

in phase q. The orientation of these polytopes are also
aligned to pose of the active contacts [57], [58].

• (9g) imposes the system dynamics constraint. We ap-
proximate the integrals by the forward Euler integra-
tion scheme, and we consider the centroidal dynamics
model [33], [40]:

cqk+1 = cqk + τ qċqk, (10a)

ċqk+1 = ċqk + τ q
(

1

m

∑
c∈Cq

f q
c,k − g

)
, (10b)

Lq
k+1 = Lq

k + τ q
∑
c∈Cq

(pc − cqk)× f q
c,k, (10c)

where m is the total mass of the robot, g is the grav-
itational acceleration, pc is the location of each active
contact point c ∈ Cq (the vertices of the rectangular foot).
We constrain the contact forces by the linearized friction
cone −µf n̂

c ≤ f t̂1,t̂2
c ≤ µf n̂

c , where µ is the friction
coefficient, f n̂

c and f t̂1,t̂2
c are the normal and tangential

components of the contact force, respectively.
As discussed in Section III, to achieve successful RHP

of legged locomotion, transitional RHP necessarily requires
the consideration of an extended planning horizon. That is,
in addition to the Execution Horizon (EH), the planning
horizon also needs to incorporate a Prediction Horizon (PH)
that foresees the future, i.e. in our case the horizon starts
from the second step till the end. Although the PH is never
executed, it serves as a trajectory-based approximation of

a) Traditional RHP

Execution Horizon (EH)
(High Complexity)

Centroidal Model
− Non-convex Dynamics
− Variable Contact Timing

Prediction Horizon (PH)
(High Complexity)

− Rectangular Foot (4 Contacts
per foot)

t

b) Multi-Fidelity RHP

Execution Horizon (EH)
(High Complexity)

Centroidal Model
− Non-convex Dynamics
− Variable Contact Timing

Prediction Horizon (PH)
(Low Complexity)

Convex Relaxation

− Rectangular Foot
(4 Contacts per foot)

+ Convex Dynamics

+ Single-Point Foot or
Rectangular Foot

+ Fixed Contact Timing

t

Fig. 4. Complexity comparison between traditional RHP and our multi-fidelity
RHP. We use orange to denote higher computation complexity, while green
means lower computation complexity. Our multi-fidelity RHP formulation
has reduced complexity due to the introduction of convex relaxations in the
prediction horizon.

the value function that can provide guidance to the EH.
However, traditional RHP typically plans the entire horizon
with a single dynamics model. Given the nonlinear centroidal
dynamics constraint (10), this can significantly increase the
dimensionality and non-convexity of the TO, which hinders
online computation. To achieve online multi-contact RHP, in
the following sections, we present two novel approaches to
improve the computation efficiency of the TO. The key idea
of our approaches is to explore approximated value function
models that can have reduced computation complexity.

VI. RHP WITH MULTIPLE LEVELS OF MODEL FIDELITY

In this section, we introduce Receding Horizon Planning
(RHP) with Multiple Levels of Model Fidelity. In contrast
to the traditional RHP (Fig. 5c) which computes the entire
horizon with an accurate dynamics model, our multi-fidelity
RHP simplifies the computation complexity by relaxing the
model accuracy along the planning horizon. More specifically,
as illustrated in Fig. 4b, to ensure the the motion planned for
execution is always dynamically consistent, we leverage the
Execution Horizon (EH) to consider the accurate dynamics
model (in our case, the centroidal dynamics model). Never-
theless, for the Prediction Horizon (PH) which is used for
approximating the value function, we compute the trajectory
with a convex relaxation of the centroidal dynamics model. In
this section, we present three candidate multi-fidelity RHPs,
where the PH considers different convex relaxations of the
centroidal dynamics model. Next, we present the detailed
formulation of these models.



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, MAY 2023 8

(a) (b) (c)

Fig. 5. Schematics of the models used in the Prediction Horizon (PH):
a) linear CoM dynamics (Candidate 1); b) convex relaxation of angular
momentum rate dynamics (dashed arrow) with rectangular contacts (Candidate
2); c) convex relaxation of angular momentum rate dynamics (dashed arrow)
with point contacts (Candidate 3).

A. Candidate 1: Linear CoM Dynamics

In our first candidate, the PH only considers the linear CoM
dynamics defined by (10a)–(10b). This allows us to remove the
non-convexity introduced by the angular dynamics (10c). As
a result, in the PH, the state vector reduces to x = [c⊤, ċ⊤]⊤

and the running cost becomes Jq =
∑Nk

k=1 τ
q(c̈qk

⊤c̈qk) which
only penalizes the CoM accelerations. However, due to the
contact timing optimization (modulated by the phase switching
timings tq), the linear CoM dynamics is still non-convex.
To eliminate this non-convexity, we choose to fix the phase
switching timings tq,∀q ∈ [4, Nph] in the PH.

B. Candidate 2: Convex Angular Dynamics with Rectangular
Contacts

For our second candidate, in addition to the linear CoM dy-
namics, we also consider a convex outer approximation of the
angular dynamics (10c) in the PH. This convex approximation
is based on the method described in [46]. For completeness,
we briefly introduce the formulation.

In the angular momentum dynamics (10c), the non-
convexity mainly comes from the bilinear terms result from the
cross product between the lever arm (pc − c) and the contact
force vector fc. According to the principle described in [46],
we can approximate each bilinear term αβ as the difference
between two bounded quadratic terms ψ+ ∈ R and ψ− ∈ R,
along with two convex trust-region constraints:

αβ =
1

4
(ψ+ − ψ−), (11a)

ψ+ ≥ (α+ β)2, (11b)
ψ− ≥ (α− β)2. (11c)

Furthermore, to retain a low-dimensional model with the state
vector of x = [c⊤, ċ⊤]⊤, we avoid the explicit modeling of
the angular momentum L. Instead, we penalize the ψ+ and
ψ− in the running cost as a proxy to minimize the angular
momentum rate, along with the CoM acceleration. Lastly,
same as the first candidate, we fix the phase switching timings
in the PH. Compared to the centroidal dynamics model, our
second candidate model has increased dimensionality due to
the introduction of the auxiliary variables ψ+ and ψ− for
approximating the angular dynamics. Nevertheless, this also
allows our second candidate model to be fully convex.

TABLE I
Knot-wise model complexity of the centroidal dynamics model and the three

convex relaxations.

XXXXXXXXModel
No. of Decision

variables
Non-convex
Constraints

Convex
Constraints

Centroidal Dynamics 36 12 0
Convex (CoM only) 18 0 6

Convex (Rectangular Foot) 78 0 48
Convex (Point Foot) 12 0 12

C. Candidate 3: Convex Angular Dynamics with Point Con-
tacts

To reduce the dimensionality of the convex relaxation of
the angular dynamics, we propose our third candidate model
in which we switch the rectangular foot to the point foot and
apply the same modeling as described in the second candidate.
As a consequence, the control input reduces to u = [f⊤

L ,f
⊤
R ]

⊤

where fL ∈ R3 and fR ∈ R3 refers to the contact force vector
of the left and right foot, respectively. This reduces the number
of auxiliary variables (ψ+ and ψ−) as well as the associated
trust region constraints introduced by (11).

To provide an intuition of the computation complexity
of these candidate models, we illustrate their schematics in
Fig. 5, and compare their model complexity in terms of
dimensionality, number of non-convex and convex constraints
in Table I.

VII. LOCALLY-GUIDED RECEDING HORIZON PLANNING

In this section, we present locally-guided RHP (LG-RHP)
which approximate the value function with a learned model.
The core idea of the our approach is to learn an oracle that
can predict local objectives for completing a given task based
on the initial robot state, the final goal and the environment
model. These local objectives are then used for constructing
local value functions that guide the planing of the Execution
Horizon (EH). Next, in Section VII-A, we present the mod-
eling of the oracle in the context of multi-contact planning.
Then, we describe the interface to the short-horizon TO in
Section VII-B

A. Oracle Modelling for Multi-Contact Planning

In this section, we firstly describe the oracle formulation
in the context of multi-contact planning and introduce the
associate variable definitions (see Fig. 6-a). Following the idea
in Section III, we define the oracle O as:

x∗,p∗,T ∗ = O(δl/r,x0,p0,Ω,xg). (12)

The oracle is designed to predict a goal configuration for
making a step, which includes:

• x∗: the target CoM state.
• p∗: the target contact location for the swing foot to reach.
• T ∗ = {t̃1, t̃2, t̃3}: the target phase switching timings for

the three phases that compose of the step.
To make the prediction, the oracle takes into account the

following inputs:



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, MAY 2023 9

p∗

α2r2

α1r1 r1

r2

(b)(a)

V1

V4V3

V2

WΣ

p∗

p0

x0 x∗

Fig. 6. (a) Definition of the oracle variables. x0 is the initial CoM state,
and p0 is the initial swing-foot position. x∗ is the target CoM state, and p∗

is the contact location of the swing foot. The purple patches are the initial
contact surfaces, while the blue patches are the contact surfaces for future
steps. We model each contact surface with its four vertices Vi. We define
all spatial terms in the contact foot frame WΣ established at the stationary
foot (non-swing foot). (b) The target contact location p∗ is represented as the
vector sum of α1r1 and α2r2, which scale along the borders of the contact
surface r1, r2 ∈ R3, with the proportion defined by α1, α2 ∈ [0, 1].

• δl/r ∈ {L,R}: the swing foot indicator telling which foot
(left/right) is going to re-position its location.

• x0: the initial CoM state.
• p0: the initial contact location of the swing foot.
• Ω = {Sl0,Sr0,S1, . . . ,Sn}: a local preview of the envi-

ronment model. We define Sl0, Sr0 as the contact surfaces
that the left and right feet initially stand upon, S1, . . . ,Sn

as the contact surfaces that future n steps will land on.
Each contact surface is represented by its four vertices:
S = {V1, . . . ,V4}, where Vi ∈ R3, i ∈ {1, . . . , 4} is the
3-D location of the i-th vertex.

• xg: a final goal state (fixed in our case).

As illustrated in Fig. 6-a, we define the spatial quantities
such as the CoM states, contact locations and the environment
model in the so-called contact-foot frame WΣ. This frame
locates at the position of the stationary foot (the non-swing
foot), while having the same orientation with respect to the
surface in contact.

Furthermore, we introduce an on-surface parameterization
for the target contact location (Fig. 6-b), which transforms
the 3-D contact location as the sum of two vectors p∗ =
α1r1 + α2r2, scaling along the surface borders r1, r2 ∈ R3,
and we predict the scaling factors α1, α2 ∈ [0, 1].

To model the oracle function, we choose a Neural Network
(NN) of 4 hidden layers. We define each layer has 256 neurons
with ReLu activation functions. The NN is implemented with
the Tensorflow framework [59].

Furthermore, to train the oracle, we employ an incremental
training scheme. The key idea of our approach is to improve
the prediction accuracy by incrementally adding data points
to demonstrate recovery actions from the states that cause
convergence failures. As illustrated in Fig. 7, in each training
iteration i, we train an oracle Oi based on the current dataset
D = D0 ∪ D∗

1 ∪ . . . ∪ D∗
i−1, where D0 is the initial dataset,

and D∗
1 ∪ . . . ∪ D∗

i−1 are the augmented datasets obtained
from previous training iterations. The initial dataset D0 is
achieved by rolling out the traditional RHP with a 3-step

Initial
Data D0

Current
Data D

Oracle Oi

Augmented
Data D∗

i

Compute Corrective Data-Points

Train

Ground-Truth Traj.
Add

LG-RHP Traj.
Corrective Traj.

Fig. 7. Procedure of the incremental training scheme. In each training iteration
i, we train an oracle Oi based on the data-set D that aggregates the initial
dataset D0 and the augmented datasets D∗

i . The augmented dataset contains
recovery actions (purple), starting from 1-3 cycles before LG-RHP fails
(dashed blue circle) until the cycle converges back to ground-truth trajectory
(computed by the long-horizon RHP).

Prediction Horizon (PH)2 over a set of randomly sampled
environments, and then extracting the datapoints from the
Execution Horizon (EH) of each cycle. For computing the
augmented dataset D∗

i , we firstly use locally-guided RHP with
the currently trained oracle Oi to plan trajectories in a RHP
fashion on the previously sampled environments. Then, we
use the traditional RHP to compute recovery actions, which
starts from 1 to 3 cycles before the locally-guided RHP fails,
until the cycle converges back to the ground-truth trajectory
(roll-out of traditional RHP on the same terrain). We repeat
the process until there is no further improvement on the
convergence rate.

B. Interfacing to the Short-horizon TO

To guide the locally-guided RHP, we adapt the short-
horizon version of (9) that only plans the Execution Horizon
(EH) with the following changes. First, we replace the terminal
cost with (xT − x∗)⊤(xT − x∗) + (p1 − p∗)⊤(p1 − p∗) that
encourages the terminal state xT and the contact location
p1 to approach the predicted targets x∗ and p∗. Second,
we introduce constraints to narrow down the search space
of phase switching timings ti around their predicted values
(1−ϵ)t̃q ≤ tq ≤ (1+ϵ)t̃q , where ϵ is a user-defined slack. This
is because we empirically find that reducing the search space
of the phase switching timings can result in more efficient
computation than using cost terms to bias their decisions.

VIII. SIMULATION STUDEIS

In this section, we compare the computation performance
of multi-fidelity RHP and locally-guided RHP against the
traditional RHP (baseline) over a set of multi-contact scenarios
in simulation. The video can be found at https://youtu.be/oMo
50XIE24.

A. Evaluation Setup

We consider the following two types of terrains: 1) moderate
slope terrain (Fig. 9) and 2) large slope terrain (Fig. 10).

2We choose 3-step Prediction Horizon (PH), as we find a longer lookahead
does not improve the quality of the motion (cost), while increasing the
computation time.

https://youtu.be/oMo_50XIE24
https://youtu.be/oMo_50XIE24


JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, MAY 2023 10

TABLE II
Computation performance for the moderate slope terrain (CS1)

Method Episodic Success Rate Cycle-wise Success Rate
Success
(Offline)

Success
(Online)

Time
Out

Fail to
Converge

Success
(Offline)

Success
(Online)

Time
Out

Fail to
Converge

Baseline 1-Step PH 100.0% 0.0% 100.0% 0.0% 100.0% 51.31% 48.69% 0.0%
MF-RHP 1

(CoM)
1 to 3-Step

PH 0.0% - - - - - - -

MF-RHP 2
(Rectangle)

1-Step PH 72.50% 0.0% 72.50% 27.50% 98.83% 69.22% 29.61% 1.17%
2-Step PH 76.32% 0.0% 76.32% 23.68% 99.05% 44.88% 54.17% 0.95%
3-Step PH 97.37% 0.0% 97.37% 2.63% 99.91% 5.66% 94.25% 0.09%

MF-RHP 3
(Point)

1-Step PH 79.49% 0.0% 79.49% 20.51% 99.16% 75.11% 24.90% 0.84%
2-Step PH 83.78% 0.0% 83.78% 16.22% 99.38% 67.08% 32.30% 0.62%
3-Step PH 97.5% 0.0% 97.5% 2.5% 99.91% 49.78% 50.14% 0.09%

LG-RHP - 75.68% 67.57% 8.11% 24.32% 99.05% 98.63% 0.42% 0.95%

Planning multi-contact motions on these terrains can be chal-
lenging. The key issue is that the admissible contact force
is limited by the orientation of the surface in contact. As a
result, in order to find a feasible momentum trajectory of the
CoM, the planning algorithm has to carefully select the contact
locations and the timings [46].

On these terrains, we use each RHP framework to offline
compute centroidal trajectories of the humanoid robot Ta-
los [20] in a receding horizon fashion. To give more detail,
we consider a RHP loop where each planning cycle aims to
compute the motion plan to be executed for the next cycle.
Under the assumption that the controller can track the planned
motion without having large deviations, we enforce the motion
plan of the next cycle always starts from the terminal state of
the Execution Horizon (EH) planned for the current cycle.

To highlight computation benefit of our proposed RHP
frameworks, we consider an online setting, where we impose
computation time limit in each cycle. To give more detail,
we denote a cycle achieves online computation, if the TO
converges within the time budget—the duration of the motion
to be executed (EH) in the current cycle. In the case of the
TO fail to converge within the time budget, we still leave the
TO to compute until convergence, unless there is no solutions
found (fail to converge).

We test all the RHP frameworks on the terrains that are
unseen during the training of the locally-guided RHP, and we
refer to the trial on each terrain as an episode. To validate
the dynamic feasibility of the planned trajectories, we track
them by using a whole-body inverse dynamics controller [23]
in simulation.

B. Implementation Details

In this work, we construct the TO problems using Python
and solve them with the interior-point method of KNITRO
10.30 [60]. Furthermore, we employ the automatic differenti-
ation framework CasADi [61] to provide the gradients and the
Hessians. All the computations are carried out on a desktop
with an Intel i9-CPU (3.6GHz) and 64GB memory.

For locally-guided RHP, we train separate oracles for the
two types of the terrains. This is because we find the data
distributions of these terrains have different modalities, i.e.

when traversing the large slopes, the robot tends to exhibit
larger momentum variations than walking on the moderate
slopes. Mixing these data points together can lead to a dis-
continuous and unbalanced dataset, on which a single neural
network model can struggle to interpolate. In Section X, we
discuss the potential options that can generalize across these
two modalities.

C. Case Study 1 (CS1): Moderate Slope

In this section, we present the experiment result of our
first case study: walking on the moderate slopes (Fig. 9).
Although we can quickly find quasi-static motions for this
type of terrain3 [58], we are interested in planning dynamic
walking motions using TO. This provides us with a unified
approach to handle non-quasi-static cases, such as the large
slope terrain. Furthermore, walking dynamically can also allow
more efficient task completion. In this case study, we set the
slack of the phase switching timing constraints for locally-
guided RHP as ϵ = 0.6. We find this can increase the chance of
finding a solution (enlarged search space) without sacrificing
much computation time.

We evaluate the performance of the each RHP framework
based on episodic success rate and cycle-wise success rate
in both the offline and online setting. We declare an episode
is successful if the chosen RHP framework can compute the
motion plan for all the cycles within the episode. In this
case study, we define that each episode contains a maximum
number of 28 cycles.

As the Table II indicates, in the offline mode (unlimited
time budget), the baseline can achieve a 100% episodic success
rate on the moderate slope terrain with only 1-step Prediction
Horizon (PH). This means the baseline can successfully find
solutions for all the cycles (100% offline cycle-wise success
rate). However, due to the non-convex nature of the centroidal
dynamics constraint, the baseline has nearly half of the cycles
(48.69%) fail to converge online (time out).

In contrast, the experiment result of multi-fidelity RHP
demonstrates that we can improve the computation efficiency
by trading off the model accuracy in the Prediction Horizon

3This is because the force vectors from the friction cone associated to each
contact surface can cancel the gravity.



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, MAY 2023 11

0.63s
1.30s1.7s 1.02s 1.69s 0.89s

0.41s 0.97s0.53s 0.73s

Fig. 8. Snapshots of the simulation for our third multi-fidelity RHP candidate with 1-step PH. We use orange bar to represent the motion duration of current
cycle, green bar as the computation time for the next cycle, and red bar as the computation time that exceeds the time budget. The video is available at
https://youtu.be/oMo 50XIE24.

TABLE III
Average computation time of the baseline and the multi-fidelity RHP

candidates with 1-step PH on the moderate slope terrain (CS1)

Method Avg. Comput. Time Avg. Time Budget

Baseline 2.38 +/- 2.66s 1.77 +/- 0.33s
MF-RHP 2 (Rectangle) 1.03 +/- 1.06s 1.20 +/- 0.40s

MF-RHP 3 (Point) 0.90 +/- 0.81s 1.21 +/- 0.38s

(PH). However, the trade-off cannot be arbitrary. For instance,
although our first multi-fidelity RHP candidate features the
simplest model in the PH (linear CoM dynamics), it always
fail to complete an episode after a few cycles, no matter how
many steps lookahead we assign to the PH. This suggests that
considering the angular dynamics in the PH is critical. Indeed,
despite we consider convex relaxed angular dynamics con-
straints in our second and third multi-fidelity RHP candidate,
both of them can achieve an offline episodic success rate of
72.5% to 79.49% with only 1-step PH. Furthermore, owing to
the relaxed dynamics model employed in the PH, our second
multi-fidelity RHP candidate can achieve 69.22% of the cycles
converging online, which outperforms the baseline (51.31%
cycles computed online). This demonstrates that reducing the
non-convexity of the TO problem can improve the computation
efficiency. Moreover, as our third multi-fidelity RHP candidate
reduces the dimensionality of the convex relaxation (switching
to point foot), it further improves computation efficiency and
increases the online cycles-wise success rate to 75.11%.

To highlight the computation efficiency of our multi-fidelity
RHP approach, we compare the average computation time of
our second and third multi-fidelity RHP candidate against the
baseline in Table III. As the table indicates, when considering
1-step PH, our second and third multi-fidelity RHP candidate
can achieve averagely 2.3x to 2.6x computation time gain than
the baseline. Furthermore, as indicated in Table III, our multi-
fidelity RHP candidates often have less time budget to spend,
since they tend to generate motions plans with shorter duration.
Nevertheless, owing to the improved computation efficiency,
our multi-fidelity RHP candidates still achieve higher online
convergence rate than the baseline (see Table II).

On the other hand, we also notice that our second and

TABLE IV
Average computation time of locally-guided RHP v.s. average time budget

for the cycles that converged online.

Terrain Avg. Comput. Time Avg. Time Budget

Moderate Slope (CS1) 0.37 +/- 0.19s 1.97 +/- 0.23s
Large Slope (CS2) 0.36 +/- 0.23s 2.01 +/- 0.48s

third multi-fidelity RHP candidate still have the risk to fail
to converge, i.e. when considering 1-step PH, the second and
the third multi-fidelity RHP candidate fail during 20.52% to
27.50% of the episodes due to convergence issues. Although
we can improve the convergence rate by extending the length
of the PH, this can increase the dimensionality of the TO
problem and hinders online computation. For instance, when
considering 3-step PH, both of our second and third multi-
fidelity RHP can achieve a high episodic success rate (97%)
that is close to the baseline. Nevertheless, this gives rise to
50.14% and 94.25% cycles fail to achieve online computation.
In Fig. 8, we illustrate a sequence of simulation snapshots of
our third multi-fidelity RHP candidate with 1-step PH, which
achieves the best online convergence rate among all multi-
fidelity RHP candidates.

Compared to the baseline and multi-fidelity RHP, we show
that locally-guided RHP achieves the fastest computation
speed, where 98.63% of the cycles converge online. Fur-
thermore, owing to the fast computation, our locally-guided
RHP can maintain online computation for 67.57% episodes,
whereas the baseline and the multi-fidelity RHP struggle
to achieve online computation consecutively for a complete
episode. Additionally, as Table IV shows, locally-guided RHP
only consumes on average 19% of the time budget. This
suggests the potential of using locally-guided RHP in real
robot control, as the remaining time budget can be allocated
to the overheads, e.g. data transmission. However, due to the
prediction error of the oracle, locally-guided RHP also has
the chance to fail to converge, i.e. locally-guided RHP failed
24.43% episodes as the robot is directed towards ill-posed
states which can cause convergence failures. In Fig. 9, we
show a sequence of the simulation snapshots for the locally-
guided RHP.

https://youtu.be/oMo_50XIE24


JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, MAY 2023 12

0.21s
1.76s1.55s 2.2s 1.94s 1.39s

0.51s 0.18s0.36s 0.27s

Fig. 9. Snapshots of simulations on moderate slopes (5-12 degrees). We use orange bar to represent the motion duration of current cycle, and green bar as
the computation time for the next cycle. The video is available at https://youtu.be/oMo 50XIE24.

TABLE V
Computation Performance for the Large Slope Terrain (CS2).

Method Episodic Success Rate Cycle-wise Success Rate
Success
(Offline)

Success
(Online)

Time
Out

Fail to
Converge

Success
(Offline)

Success
(Online)

Time
Out

Fail to
Converge

Baseline 1-Step PH 78.47% 0.25% 78.22% 21.53% 94.37% 22.93% 71.44% 5.63%
2-Step PH 100.0% 0.0% 100.0% 0.0% 100.0% 7.99% 92.01% 0.0%

MF-RHP 1
(CoM)

1 to 3-Step
PH 0.0% - - - - - - -

MF-RHP 2
(Rectangle)

1-Step PH 40.13% 2.36% 37.77% 59.87% 83.0% 43.63% 39.37% 17.0%
2-Step PH 52.66% 0.27% 52.39% 47.43% 89.90% 26.58% 63.32% 10.10%
3-Step PH 53.38% 0.0% 53.38% 46.62% 91.81% 8.00% 83.80% 8.19%

MF-RHP 3
(Point)

1-Step PH 36.51% 4.89% 31.62% 63.49% 81.98% 52.50% 29.48% 18.02%
2-Step PH 57.27% 0.77% 56.50% 42.73% 90.92% 37.54% 53.37% 9.08%
3-Step PH 58.19% 0.0% 58.19% 41.81% 92.64% 20.65% 71.99% 7.36%

LG-RHP - 79.9% 76.1% 3.8% 20.1% 95.99% 95.0% 0.99% 4.01%

D. Case Study 2 (CS2): Large Slope

In this section, we present the experiment result for the
large slope terrain, on which the robot cannot maintain static
stability and has to traverse the terrain dynamically. We define
that each episode starts from the cycle when the large slope
is captured inside the lookahead horizon and ends at the
cycle when the robot gets off the large slope. For locally-
guided RHP, we set the slack of the phase switching timing
constraints as ϵ = 0.15, as empirically determined to give a
good balance between the success rate and the computation
speed.

We list the computation performance of each RHP frame-
works in Table V. As we can observe, in an offline setting,
the baseline can still achieve 100% episodic success rate on
the considered large slope terrains. However, this requires
the baseline to consider a 2-step PH, which can significantly
increase the computation complexity. As a result, the baseline
only has 7.99% of the cycles converging online.

On the other hand, we find that multi-fidelity RHP candi-
dates struggle to converge for the large slope terrain. To give
more detail, similar to CS1, since our first multi-fidelity RHP
ignores the angular dynamics in the PH, it can never complete
a single episode on the large slope terrain. However, despite
our second and third multi-fidelity RHP candidate consider
convex relaxations of the angular dynamics, they still fail to

complete 41.81% to 63.49% episodes. This result suggests
that the convex relaxed models we employed in the PH may
not be accurate enough to represent the momentum variation
of the highly dynamic motion for traversing the large slope,
and further investigation on the balance between the model
accuracy and computation complexity is needed.

In contrast, despite the increased terrain complexity, locally-
guided RHP still achieves the highest computation efficiency
among all the RHP frameworks. More specifically, our experi-
ment result shows that locally-guided RHP has 95.99% cycles
successfully converging and 95.0% of the cycles achieving on-
line computation. Owing to the fast computation, our locally-
guided RHP can also maintain online computation for 76.1%
of the episodes. For the episodes that fail to achieve online
computation consecutively, 3.8% of them are due to time
out, and the rest (20.1%) are caused by convergence failures.
Furthermore, as indicated in Table IV, our locally-guided RHP
only consumes on average 18% of the time budget. In Fig. 10,
we show a sequence of simulation snapshots for locally-guided
RHP on the large slope terrain.

E. Improving Prediction Accuracy with Incremental Training
Scheme

This section demonstrates the effectiveness of our incre-
mental training scheme described in Section VII-A. In Ta-
ble VI, we list the episodic success rate of locally-guided RHP

https://youtu.be/oMo_50XIE24


JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, MAY 2023 13

Step-D
ow

n
Step-up

2.2s
0.38s

2.2s
0.26s

1.25s
0.47s 0.33s

0.84s

Side-w
ay

2.1s
0.49s

1.77s
0.21s

1.7s
0.37s

0.41s
0.81s

0.22s
1.75s

Fig. 10. Snapshots of simulations on the large slope (17-25 degrees). The blue block is the large slope (25 degrees), while the rest are moderate slopes
(5-12 degrees). The robot tends to build momentum to achieve dynamic balancing on the large slope. We show that locally-guided RHP can be used online,
as the computation time of the next cycle (green bar) is smaller than the motion duration of the current cycle (orange bar). The video is available at
https://youtu.be/oMo 50XIE24.

TABLE VI
Episodic success rate of different iterations of the incremental training

scheme on the training environments.

Terrain Iter. 1 Iter. 2 Iter. 3 Iter. 4 Iter. 5

Moderate (CS1) 67.2% 76.2% 80.3% 81.8% 82.1%
Large (CS2) 71.5% 75.3% 79.5% 80.4% 81.0%

achieved on the training environments with oracles trained
from different iterations of the data augmentation process. Our
result shows that adding corrective datapoints of interest can
increase the prediction accuracy, which improves the episodic
success rate of locally-guided RHP. We find the success rate
saturates after 5 training iterations.

IX. REAL-WORLD EXPERIMENTS

Based on our simulation study (Section VIII), we find that
our locally-guided RHP approach features the best computa-
tion efficiency compared to all the RHP frameworks consid-
ered. This computation advantage enables us to demonstrate

online receding horizon planning on the torque-controlled
humanoid robot platform Talos [20]. We consider real-world
scenarios where online motion adaption is critical, i.e., travers-
ing uneven terrain with unexpected changes. Next, we present
these robot experiments in detail. We describe the software
implementation in Section IX-A, and demonstrate the results
in Section IX-B. The video of the experiments can be found
at https://youtu.be/oMo 50XIE24.

A. Software Implementation

To achieve the robot experiments, we build a software
framework that consists of the following two components:
1) a planning node, which computes the motion plan in an
online receding horizon fashion using locally-guided RHP
based on the perceived environment, and 2) a robot control
stack that executes the planned trajectories in the real-world
while considering state feedback of the robot.

The interplay between these two components are described
as following. At the beginning of each cycle, the robot control

https://youtu.be/oMo_50XIE24
https://youtu.be/oMo_50XIE24


JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, MAY 2023 14

Assume
Flat

Assume
Flat

Assume
Flat

Terrain
Changed

Real-World Motion

Motion Plan (current cycle and next cycle) and the preview of the environment

Real-World Motion

Motion Plan (current cycle and next cycle) and the preview of the environment

Fig. 11. Snapshots for our first real-world experiment in changing environments and the motion planned in each cycle. In this scenario, we change part of the
environment from flat surfaces to an up-and-down hill terrain during run-time. We indicate this terrain change by placing a VICON marker next to the terrain,
and the planning node modified the terrain model accordingly, once it detects the VICON marker plate. Owing to the fast computation, our locally-guided
RHP successfully achieved online receding horizon planning in this scenario, which allows the robot to reliably traverse the terrain. The robot moves from
left to right, top to down. The inclination of the slope is 10 degrees. The video is available at https://youtu.be/oMo 50XIE24.

stack informs the planning node to compute the motion plan
for the next cycle, while in the meantime starts executing the
motion already planned for the current cycle. We assume that
robot can always track the planned trajectories without having
large deviations. Hence, we define that the motion plan for the
next cycle always starts from the terminal state of the current
cycle. We recall that in each cycle, the planning node always
computes the Execution Horizon (EH) that covers the motion
plan of making one step to reach the local objective. The
prediction of the local objective is based on the preview of the
environment. With preview we refer to the current perceived
terrain model that is ahead of the robot. In our work, we realize
the terrain perception based on the VICON motion capture
system. The terrain perception module identifies different
terrain geometries through the detection of a VICON marker
plate. Once the planning node completes the computation, it

will send the planned motion to the robot control module for
execution in the next cycle.

To track the planned trajectories, our robot control stack
constantly updates the torque command of each joint to
achieve the desired motion. In more detail, in each control
loop that runs at 500Hz, the robot control stack firstly decides
the desired CoM acceleration and the foot state based on the
planned trajectories as well as the state feedback of the robot.
For instance, the desired CoM acceleration ẍ is determined
through a PD control law:

ẍ = Kp(x
des − xfb) +Kd(ẋ

des − ẋfb), (13)

where Kp and Kd are the PD gains, xdes and ẋdes are
the desired CoM position and velocity interpolated from the
planned trajectories, and xfb and ẋfb are the state feedback
of the CoM position and velocity. To set the desired foot

https://youtu.be/oMo_50XIE24


JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, MAY 2023 15

Fig. 12. Snapshots of our second real-world experiment in changing environment. In this case, we add a stair (4cm height) while robot is walking. The
planning node detects the stair based on the position measurement of the VICON marker plate attached on the stair. In this experiment, our locally-guided
RHP successfully achieved online computation in each cycle, which allows the robot to safely overcome the stair. The robot moves from left to right, top to
down. The video is available at https://youtu.be/oMo 50XIE24.

state, we firstly create swing trajectories in between adjacent
contacts, and then query the foot state from these swing
trajectories for each time step of the control loop. After having
the desired CoM acceleration and the desired foot state, the
robot control stack employs a whole-body inverse dynamics
controller developed by PAL Robotics to compute the torque
command of each joint.

Our software implementation is based on the ROS frame-
work [62], and the communication between the planning node
and the robot control stack is achieved through the ROS
subscriber/publisher protocol. Furthermore, we implement the
planning node in Python as described in Section VIII-B, and
we develop the robot control stack using C++.

B. Experiment Result

In this section, we present the results of our real-world
robot experiments. To highlight the benefit of achieving online
receding horizon planning, we consider the scenarios where
the environment changes during run-time and the robot has to
adapt its motion on-the-fly to achieve reliable and continuous
operation.

Specifically, in Fig. 11, we consider a scenario where
we change the flat surfaces to an up-and-down hill terrain
along the pathway of the robot. During the first few cycles,
the preview of the environment is considered as flat regions
(covered by a curtain). While the robot is moving forward,
the flat region changes to an up-and-down hill terrain by
removing the curtain. The planning node notices the change of
the terrain by detecting the VICON marker plate, and updates
the environment model accordingly. During this experiment,
locally-guided RHP successfully achieved online computation
of the contact and motion plans that are consistent to the latest
terrain condition perceived the robot. For instance, the average

computation time of locally-guided RHP is 0.22 +/- 0.076
seconds, which is smaller than the time budget 3.5 seconds.
This fast computation speed allows the robot to safely traverse
this changing environment. In Fig. 11, we show the snapshots
of this experiment, as well as the motion plan generated in
each cycle along with the terrain model perceived in that cycle.

In Fig. 12, we demonstrate another changing environment
scenario, where we add a stair during the robot operation.
Same as in the previous scenario, the locally-guided RHP also
achieved online receding horizon planning in this scenario.
The average computation time is 0.23 +/- 0.1 seconds (the time
budget is 3.5 seconds). This enables the robot to successfully
overcome the newly introduced stair.

Furthermore, we also perform real-world experiments on
challenging uneven terrains, such as continuously walking on
1) random slopes where the blocks are oriented around either
the y-axis or the diagonal axis, 2) up-and-down hill terrain,
and 3) the v-shape terrain. The inclination of these slopes
are 10 degrees. In these experiments, our locally-guided RHP
achieves online computation for all the cycles. THe average
computation time is 0.21 +/- 0.06 seconds, and the time budget
is 3.5 seconds. The snapshots of these experiments are shown
in Fig. 13.

X. DISCUSSION

In this section, we compare the advantages and disadvan-
tages of each RHP framework based on our experiment result.

From the result of the baseline, we firstly verify that con-
sidering an accurate system dynamic model in the Prediction
Horizon (PH) can guarantee a high convergence rate (100% for
the terrains we considered). This is expected as the accurate
system dynamics model allows the PH to approximate the
value function as accurately as possible. Furthermore, we also

https://youtu.be/oMo_50XIE24


JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, MAY 2023 16

a) Random Slopes

b) Up-and-Down Hills

c) V-shape Terrain

Fig. 13. Snapshots of our real-world experiment on challenging uneven terrains. Our scenarios include: a) random slopes (the slopes are oriented around
either the y-axis or the diagonal axis), b) up-and-down hills, and c) v-shape terrain. The robot moves from left to right, top to down. The inclination of all
the slope is 10 degrees. The video is available at https://youtu.be/oMo 50XIE24.

find that although the PH does not need to be infinite long, hav-
ing a PH with sufficient length is important to the convergence
of the baseline. For instance, our experiment result shows that
the baseline only requires 1-step PH to achieve successful RHP
on the moderate slope terrain. However, to traverse large slope
terrain where static stability cannot be maintained, the baseline
may need 2-step PH. Despite the high convergence rate, the
downside of the baseline is the long computation time due to
the consideration of non-convex centroidal dynamics model,
which hinders its online usage.

To facilitate online multi-contact RHP, we explore the trade-

off between the computation efficiency and the model accuracy
in the PH. This gives rise to multi-fidelity RHP, where we
reduce the TO complexity by employing convex relaxed model
in the PH. From our experiment result, we can draw following
conclusions. First, we find that the multi-fidelity RHP always
fails to complete an episode if we only consider linear CoM
dynamics in the PH (Candidate 1). This suggests that the
convex relaxation employed in the PH cannot be arbitrary and
considering the angular dynamics is important. This finding
leads to our second and third multi-fidelity RHP candidates,
where we model the angular dynamics with a convex relax-

https://youtu.be/oMo_50XIE24


JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, MAY 2023 17

ation. Second, from the result of our second and third multi-
fidelity RHP candidates, we can conclude that employing a
convex relaxation in the PH can successfully improve the
computation efficiency and increase the chances to achieve
online computation. However, planning the PH with a relaxed
model can inevitably affect the accuracy of the value function
approximated by the PH. This can introduce the risk of failing
to converge, i.e. on the moderate slope, our second and the
third multi-fidelity RHP fail to complete 27.5% and 20.52%
episodes with 1-step PH. Although we can improve the conver-
gence rate of our multi-fidelity RHP by extending the length of
the PH, this increases the dimensionality of the TO problem,
which hinders online computation. Lastly, we realize that on
the large slope terrain, our multi-fidelity RHP fails to complete
about half of the episodes, and extending the length of the PH
does not improve much on the convergence rate. This suggests
that computing the PH with our proposed convex relaxations
may lead to inaccurate value function approximations for the
large slope terrain. We guess the inaccuracy comes from the
following two factors. First, the proposed convex relaxations
may not be tight enough to capture the momentum changes
of highly dynamic motions [48]. Second, the manually fixed
phase switching timings in the PH can be invalid for modeling
such dynamic motions. We believe that further investigations
regarding to the trade-off between the computation efficiency
and model accuracy is necessary.

To further improve the computation efficiency of multi-
contact RHP, we propose locally-guided RHP where we
approximate the value function with a learned model. More
specifically, we introduce an oracle to predict local objectives
for achieving a given task, and we then construct local value
functions to attract the Execution Horizon (EH) towards these
predicted local objectives. This approach features a shortened
planning horizon (only plans the the EH) and we demonstrate
that locally-guided RHP can achieve the best online conver-
gence rate in simulation (95% to 98.63% cycles converged on-
line) compared to the baseline and the multi-fidelity RHP. This
computation advantage also enables us to demonstrate online
receding horizon on our real-world humanoid robot platform
Talos in dynamically changing environments (Section IX).
However, locally-guided RHP still struggles in the following
two cases. First, the oracle can have prediction errors due to
imperfect fitting and insufficient data coverage. This can lead
to inaccurate value functions which direct the robot towards ill-
posed states and cause convergence failures. Although we can
mitigate this issue by an incremental training scheme which
demonstrates recovery actions from unseen states, we find it is
hard to cover all the possible combinations of the robot state
and environment models. To further improve the convergence
rate of locally-guided RHP, we can train the oracle with a
Recurrent Neural Network (RNN) or impose safety constraints
in the short-horizon TO. Second, although locally-guided RHP
only computes the EH, it is still a nonlinear programming
problem that has no guarantee on computation time and can
fail to convergence online. To alleviate this issue, a viable
option is to reduce the number of decision variables by
representing trajectories with parameterized curvatures, e.g.
Bézier Curves [40]. Moreover, as mentioned in Section VIII-B,

we find that the datapoints for the two types of terrains
exhibit different modalities. This can impose challenges when
training a single Neural Network on the combined dataset.
Although we capture the two modalities by using separate
Neural Networks, it is worthwhile to explore a more unified
approach that can handle multimodal data, e.g. using mixture
density networks [63].

In this work, we assume the sequence of contact surfaces
is predefined [5], [58] and the selection of gait patterns is
given, i.e. the sequence in which the feet make and break
contacts with the environment [64]. Ideally, these discrete de-
cisions should be automatically resolved by the optimization.
However, this gives rise to combinatorial problems which are
difficult to solve. In the future, we suggest to extend both
multi-fidelity RHP and locally-guided RHP to consider the
combinatorial aspect of the multi-contact planning problem.

XI. CONCLUSION

In this article, we propose multi-fidelity RHP and locally-
guided RHP, two novel methods that can achieve online multi-
contact RHP on uneven terrains. The core idea of our methods
is to find computationally efficient approximations of the value
function. To this end, multi-fidelity RHP approximates the
value function by computing the prediction horizon with con-
vex relaxed models. Alternatively, locally-guided RHP focuses
on learning a value function model, in which we train an oracle
to predict local objectives for completing a given task, and we
then build local value functions based on these local objectives.

The experiment result of the multi-fidelity RHP demon-
strates that it is possible to achieve online computation by
relaxing the model accuracy in the prediction horizon. How-
ever, this can downgrade the accuracy of the value function
approximated by the prediction horizon, which may cause
convergence failures. To improve the performance of multi-
fidelity RHP, we believe future investigations on the balance
between the computation efficiency and the model accuracy is
important.

Owing to the shortened planning horizon, our locally-guided
RHP achieves the best online convergence rate among all the
RHP frameworks. This computation advantage enables us to
demonstrate online receding horizon planning on our real-
world humanoid robot platform Talos in dynamically changing
environments. However, we find that the oracle can have
prediction errors and lead to convergence failures. To alleviate
this issue, we employ an incremental training scheme to add
datapoints from the states that cause convergence failures. We
still found it was hard to achieve 100% prediction accuracy
with this approach, showing that further investigations on
improving the learning accuracy is necessary.

ACKNOWLEDGMENT

This research is supported by EU H2020 project Mem-
ory of Motion (MEMMO, 780684), EPSRC UK RAI Hub
for Offshore Robotics for Certification of Assets (ORCA,
EP/R026173/1) and The Alan Turing Institute. The authors
would like to thank Theodoros Stouraitis, Iordanis Chatziniko-
laidis, Chris Mower, João Moura, Carlos Mastalli for their



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, MAY 2023 18

discussion and feedback of the draft, Pierre Fernbach and
PAL Robotics for sharing us with the experience of the robot,
Huixin Luo for the help of multi-media editing, and Douglas
Howie for setting up the experimental terrain. Moreover, the
authors would like to express their sincere gratitude to Andreas
Christou, Marina Aoyama, Namiko Saito and Ran Long for
their help on running the real-world experiment.

REFERENCES

[1] M. Posa and R. Tedrake, “Direct trajectory optimization of rigid body
dynamical systems through contact,” in Algorithmic foundations of
robotics X. Springer Berlin Heidelberg, 2013, pp. 527–542.

[2] A. W. Winkler, C. D. Bellicoso, M. Hutter, and J. Buchli, “Gait and
trajectory optimization for legged systems through phase-based end-
effector parameterization,” IEEE Robotics and Automation Letters (RA-
L), vol. 3, no. 3, pp. 1560–1567, 2018.

[3] M. Toussaint, K. Allen, K. Smith, and J. Tenenbaum, “Differentiable
physics and stable modes for tool-use and manipulation planning,” in
Robotics: Science and Systems (R:SS), 2018.

[4] T. Stouraitis, I. Chatzinikolaidis, M. Gienger, and S. Vijayakumar, “On-
line hybrid motion planning for dyadic collaborative manipulation via
bilevel optimization,” IEEE Transactions on Robotics (T-RO), vol. 36,
no. 5, pp. 1452–1471, 2020.

[5] R. Deits and R. Tedrake, “Footstep planning on uneven terrain with
mixed-integer convex optimization,” in IEEE International Conference
on Humanoid Robots (Humanoids), 2014, pp. 279–286.

[6] B. Aceituno-Cabezas, C. Mastalli, H. Dai, M. Focchi, A. Radulescu,
D. G. Caldwell, J. Cappelletto, J. C. Grieco, G. Fernández-López, and
C. Semini, “Simultaneous contact, gait, and motion planning for robust
multilegged locomotion via mixed-integer convex optimization,” IEEE
Robotics and Automation Letters (RA-L), vol. 3, no. 3, pp. 2531–2538,
2017.

[7] I. Mordatch, E. Todorov, and Z. Popović, “Discovery of complex
behaviors through contact-invariant optimization,” ACM Transactions on
Graphics (ToG), vol. 31, no. 4, pp. 1–8, 2012.

[8] D. Kanoulas, C. Zhou, A. Nguyen, G. Kanoulas, D. G. Caldwell, and
N. G. Tsagarakis, “Vision-based foothold contact reasoning using curved
surface patches,” in IEEE International Conference on Humanoid Robots
(Humanoids), 2017, pp. 121–128.

[9] S. Tonneau, A. Del Prete, J. Pettré, C. Park, D. Manocha, and
N. Mansard, “An efficient acyclic contact planner for multiped robots,”
IEEE Transactions on Robotics (T-RO), vol. 34, no. 3, pp. 586–601,
2018.

[10] M. Kalakrishnan, J. Buchli, P. Pastor, M. Mistry, and S. Schaal, “Learn-
ing, planning, and control for quadruped locomotion over challenging
terrain,” International Journal of Robotics Research (IJRR), vol. 30,
no. 2, pp. 236–258, 2011.

[11] H.-W. Park, P. M. Wensing, and S. Kim, “Online planning for au-
tonomous running jumps over obstacles in high-speed quadrupeds,” in
Robotics: Science and Systems (R:SS), 2015.

[12] O. Melon, R. Orsolino, D. Surovik, M. Geisert, I. Havoutis, and M. Fal-
lon, “Receding-horizon perceptive trajectory optimization for dynamic
legged locomotion with learned initialization,” in IEEE International
Conference on Robotics and Automation (ICRA), 2021, pp. 9805–9811.

[13] P. Fankhauser, M. Bjelonic, C. D. Bellicoso, T. Miki, and M. Hutter,
“Robust rough-terrain locomotion with a quadrupedal robot,” in IEEE
International Conference on Robotics and Automation (ICRA), 2018, pp.
5761–5768.

[14] C. Mastalli, R. Budhiraja, W. Merkt, G. Saurel, B. Hammoud,
M. Naveau, J. Carpentier, L. Righetti, S. Vijayakumar, and N. Mansard,
“Crocoddyl: An Efficient and Versatile Framework for Multi-Contact
Optimal Control,” in IEEE International Conference on Robotics and
Automation (ICRA), 2020.

[15] M. Neunert, M. Stäuble, M. Giftthaler, C. D. Bellicoso, J. Carius,
C. Gehring, M. Hutter, and J. Buchli, “Whole-body nonlinear model
predictive control through contacts for quadrupeds,” IEEE Robotics and
Automation Letters (RA-L), vol. 3, no. 3, pp. 1458–1465, 2018.

[16] J. Di Carlo, P. M. Wensing, B. Katz, G. Bledt, and S. Kim, “Dynamic
locomotion in the MIT cheetah 3 through convex model-predictive
control,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2018, pp. 1–9.

[17] E. Dantec, R. Budhiraja, A. Roig, T. Lembono, G. Saurel, O. Stasse,
P. Fernbach, S. Tonneau, S. Vijayakumar, S. Calinon, M. Taı̈x, and
N. Mansard, “Whole body model predictive control with a memory of
motion: Experiments on a torque-controlled Talos,” in IEEE Interna-
tional Conference on Robotics and Automation (ICRA), 2021.

[18] J. T. Betts, Practical methods for optimal control and estimation using
nonlinear programming. SIAM, 2010.

[19] R. Bellman, “Dynamic programming,” Science, vol. 153, no. 3731, pp.
34–37, 1966.

[20] O. Stasse, T. Flayols, R. Budhiraja, K. Giraud-Esclasse, J. Carpentier,
J. Mirabel, A. Del Prete, P. Souères, N. Mansard, F. Lamiraux et al.,
“Talos: A new humanoid research platform targeted for industrial
applications,” in IEEE International Conference on Humanoid Robots
(Humanoids), 2017, pp. 689–695.

[21] M. Zhong, M. Johnson, Y. Tassa, T. Erez, and E. Todorov, “Value
function approximation and model predictive control,” in IEEE Sympo-
sium on Adaptive Dynamic Programming and Reinforcement Learning
(ADPRL). IEEE, 2013, pp. 100–107.

[22] R. Deits, T. Koolen, and R. Tedrake, “Lvis: Learning from value function
intervals for contact-aware robot controllers,” in IEEE International
Conference on Robotics and Automation (ICRA), 2019, pp. 7762–7768.

[23] A. Del Prete and N. Mansard, “Robustness to joint-torque-tracking errors
in task-space inverse dynamics,” IEEE Transactions on Robotics (T-RO),
vol. 32, no. 5, pp. 1091–1105, 2016.

[24] J. Wang, S. Kim, S. Vijayakumar, and S. Tonneau, “Multi-fidelity
receding horizon planning for multi-contact locomotion,” in IEEE In-
ternational Conference on Humanoid Robots (Humanoids), 2021, pp.
53–60.

[25] J. Wang, T. S. Lembono, S. Kim, S. Calinon, S. Vijayakumar, and
S. Tonneau, “Learning to guide online multi-contact receding horizon
planning,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2022.

[26] Y. Tassa, T. Erez, and E. Todorov, “Synthesis and stabilization of
complex behaviors through online trajectory optimization,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2012, pp. 4906–4913.

[27] G. Schultz and K. Mombaur, “Modeling and optimal control of human-
like running,” IEEE/ASME Transactions on Mechatronics, vol. 15, no. 5,
pp. 783–792, 2009.

[28] K. H. Koch, K. Mombaur, and P. Soueres, “Optimization-based walking
generation for humanoid robot,” IFAC Proceedings Volumes, vol. 45,
no. 22, pp. 498–504, 2012.

[29] T. Erez and E. Todorov, “Trajectory optimization for domains with
contacts using inverse dynamics,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2012, pp. 4914–4919.

[30] J. Koschorreck and K. Mombaur, “Modeling and optimal control of
human platform diving with somersaults and twists,” Optimization and
Engineering, vol. 13, no. 1, pp. 29–56, 2012.

[31] C. Mastalli, W. Merkt, J. Marti-Saumell, H. Ferrolho, J. Solà,
N. Mansard, and S. Vijayakumar, “A feasibility-driven approach to
control-limited ddp,” Autonomous Robots, pp. 1–21, 2022.

[32] A. Meduri, P. Shah, J. Viereck, M. Khadiv, I. Havoutis, and L. Righetti,
“Biconmp: A nonlinear model predictive control framework for whole
body motion planning,” IEEE Transactions on Robotics (T-RO), vol. 39,
no. 2, pp. 905–922, 2023.

[33] D. E. Orin, A. Goswami, and S. H. Lee, “Centroidal dynamics of a
humanoid robot,” Autonomous Robots, vol. 35, no. 2-3, pp. 161–176,
2013.

[34] J. Carpentier and N. Mansard, “Multicontact locomotion of legged
robots,” IEEE Transactions on Robotics (T-RO), 2018.

[35] H. Dai, A. Valenzuela, and R. Tedrake, “Whole-body motion planning
with centroidal dynamics and full kinematics,” in IEEE International
Conference on Humanoid Robots (Humanoids), 2014.

[36] A. Herzog, S. Schaal, and L. Righetti, “Structured contact force op-
timization for kino-dynamic motion generation,” in IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), 2016, pp.
2703–2710.

[37] P. M. Wensing and D. E. Orin, “Generation of dynamic humanoid
behaviors through task-space control with conic optimization,” in IEEE
International Conference on Robotics and Automation (ICRA), 2013, pp.
3103–3109.

[38] A. Herzog, N. Rotella, S. Schaal, and L. Righetti, “Trajectory generation
for multi-contact momentum-control,” in IEEE International Conference
on Humanoid Robots (Humanoids), 2015.

[39] J. Carpentier, S. Tonneau, M. Naveau, O. Stasse, and N. Mansard, “A
versatile and efficient pattern generator for generalized legged locomo-



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, MAY 2023 19

tion,” in IEEE International Conference on Robotics and Automation
(ICRA), 2016, pp. 3555–3561.

[40] P. Fernbach, S. Tonneau, O. Stasse, J. Carpentier, and M. Taı̈x, “C-croc:
Continuous and convex resolution of centroidal dynamic trajectories for
legged robots in multicontact scenarios,” IEEE Transactions on Robotics
(T-RO), vol. 36, no. 3, pp. 676–691, 2020.

[41] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi,
and H. Hirukawa, “Biped walking pattern generation by using preview
control of zero-moment point,” in IEEE International Conference on
Robotics and Automation (ICRA), vol. 2, 2003, pp. 1620–1626.

[42] J. Englsberger, C. Ott, and A. Albu-Schäffer, “Three-dimensional bipedal
walking control based on divergent component of motion,” IEEE Trans-
actions on Robotics (T-RO), vol. 31, no. 2, pp. 355–368, 2015.

[43] P.-B. Wieber, “Viability and predictive control for safe locomotion,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2008, pp. 1103–1108.

[44] S. Caron and A. Kheddar, “Multi-contact walking pattern generation
based on model preview control of 3d com accelerations,” in IEEE
International Conference on Humanoid Robots (Humanoids), 2016, pp.
550–557.

[45] S. Caron and Q.-C. Pham, “When to make a step? tackling the timing
problem in multi-contact locomotion by topp-mpc,” in IEEE Interna-
tional Conference on Humanoid Robots (Humanoids), 2017, pp. 522–
528.

[46] B. Ponton, M. Khadiv, A. Meduri, and L. Righetti, “Efficient multi-
contact pattern generation with sequential convex approximations of the
centroidal dynamics,” IEEE Transactions on Robotics (T-RO), 2021.

[47] H. Dai and R. Tedrake, “Planning robust walking motion on uneven
terrain via convex optimization,” in IEEE International Conference on
Humanoid Robots (Humanoids), 2016, pp. 579–586.

[48] B. Aceituno-Cabezas, C. Mastalli, H. Dai, M. Focchi, A. Radulescu,
D. G. Caldwell, J. Cappelletto, J. C. Grieco, G. Fernández-López, and
C. Semini, “Simultaneous contact, gait, and motion planning for robust
multilegged locomotion via mixed-integer convex optimization,” IEEE
Robotics and Automation Letters (RA-L), vol. 3, no. 3, pp. 2531–2538,
2018.

[49] H. Li, R. J. Frei, and P. M. Wensing, “Model hierarchy predictive control
of robotic systems,” IEEE Robotics and Automation Letters (RA-L),
vol. 6, no. 2, pp. 3373–3380, 2021.

[50] Y.-C. Lin, B. Ponton, L. Righetti, and D. Berenson, “Efficient humanoid
contact planning using learned centroidal dynamics prediction,” in IEEE
International Conference on Robotics and Automation (ICRA), 2019, pp.
5280–5286.

[51] T. S. Lembono, C. Mastalli, P. Fernbach, N. Mansard, and S. Calinon,
“Learning how to walk: Warm-starting optimal control solver with
memory of motion,” in IEEE International Conference on Robotics and
Automation (ICRA), 2020, pp. 1357–1363.

[52] A. Parag, S. Kleff, L. Saci, N. Mansard, and O. Stasse, “Value learning
from trajectory optimization and sobolev descent: A step toward rein-
forcement learning with superlinear convergence properties,” in IEEE
International Conference on Robotics and Automation (ICRA), 2022.

[53] J. Viereck, A. Meduri, and L. Righetti, “Valuenetqp: Learned one-step
optimal control for legged locomotion,” in Learning for Dynamics and
Control Conference. PMLR, 2022, pp. 931–942.

[54] S. Ross, G. Gordon, and D. Bagnell, “A reduction of imitation learning
and structured prediction to no-regret online learning,” in International
Conference on Artificial Intelligence and Statistics. JMLR, 2011, pp.
627–635.

[55] A. Venkatraman, B. Boots, M. Hebert, and J. A. Bagnell, “Data
as demonstrator with applications to system identification,” in ALR
Workshop, NIPS, 2014.

[56] M. Laskey, J. Lee, R. Fox, A. Dragan, and K. Goldberg, “Dart: Noise
injection for robust imitation learning,” in Conference on Robot Learning
(CoRL). PMLR, 2017, pp. 143–156.

[57] S. Tonneau, P. Fernbach, A. D. Prete, J. Pettré, and N. Mansard, “2pac:
Two-point attractors for center of mass trajectories in multi-contact
scenarios,” ACM Transactions on Graphics (TOG), vol. 37, no. 5, pp.
1–14, 2018.

[58] D. Song, P. Fernbach, T. Flayols, A. Del Prete, N. Mansard, S. Tonneau,
and Y. J. Kim, “Solving footstep planning as a feasibility problem using
l1-norm minimization,” IEEE Robotics and Automation Letters (RA-L),
vol. 6, no. 3, pp. 5961–5968, 2021.

[59] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: a system for
large-scale machine learning,” in 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 16), 2016, pp. 265–283.

[60] R. H. Byrd, J. Nocedal, and R. A. Waltz, “Knitro: An integrated package
for nonlinear optimization,” in Large-Scale Nonlinear Optimization.
Springer US, 2006, pp. 35–59.

[61] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl,
“CasADi – A software framework for nonlinear optimization and opti-
mal control,” Mathematical Programming Computation, vol. 11, no. 1,
pp. 1–36, 2019.

[62] Stanford Artificial Intelligence Laboratory et al., “Robotic operating
system.” [Online]. Available: https://www.ros.org

[63] C. M. Bishop, “Mixture Density Networks,” Aston University, Tech.
Rep., 1994.

[64] J. Wang, I. Chatzinikolaidis, C. Mastalli, W. Wolfslag, G. Xin, S. Ton-
neau, and S. Vijayakumar, “Automatic Gait Pattern Selection for Legged
Robots,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2020.

https://www.ros.org

